Advertisement
donRumata03

Untitled

Oct 24th, 2024
68
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
Python 2.70 KB | None | 0 0
  1. Traceback (most recent call last):
  2.   File "/app/cases/mnist/mnist_classification.py", line 400, in <module>
  3.     build_mnist_cls(path, dataset_cls=dataset_cls, linear_is_kan=False, conv_is_kan=False)
  4.   File "/app/cases/mnist/mnist_classification.py", line 329, in build_mnist_cls
  5.     _optimizer_result = composer.compose_pipeline(dataset_train)
  6.   File "/app/nas/composer/nn_composer.py", line 71, in compose_pipeline
  7.     optimization_result = self.optimizer.optimise(objective_eval.evaluate)
  8.   File "/opt/conda/lib/python3.8/site-packages/golem/core/optimisers/populational_optimizer.py", line 88, in optimise
  9.     self._initial_population(evaluator)
  10.   File "/opt/conda/lib/python3.8/site-packages/golem/core/optimisers/genetic/gp_optimizer.py", line 68, in _initial_population
  11.     self._update_population(evaluator(self.initial_individuals), 'initial_assumptions')
  12.   File "/opt/conda/lib/python3.8/site-packages/golem/core/optimisers/genetic/evaluation.py", line 281, in evaluate_population
  13.     evaluation_results = [self.evaluate_single(ind.graph, ind.uid) for ind in individuals_to_evaluate]
  14.   File "/opt/conda/lib/python3.8/site-packages/golem/core/optimisers/genetic/evaluation.py", line 281, in <listcomp>
  15.     evaluation_results = [self.evaluate_single(ind.graph, ind.uid) for ind in individuals_to_evaluate]
  16.   File "/opt/conda/lib/python3.8/site-packages/golem/core/optimisers/genetic/evaluation.py", line 168, in evaluate_single
  17.     fitness, graph = adapted_evaluate(graph)
  18.   File "/opt/conda/lib/python3.8/site-packages/golem/core/adapter/adapter.py", line 173, in adapted_fun
  19.     result = fun(*adapted_args, **adapted_kwargs)
  20.   File "/opt/conda/lib/python3.8/site-packages/golem/core/optimisers/genetic/evaluation.py", line 181, in _evaluate_graph
  21.     fitness = self._objective_eval(domain_graph)
  22.   File "/app/nas/optimizer/objective/future/nas_objective_evaluate.py", line 52, in evaluate
  23.     fitted_model = self._graph_fit(graph, train_data, log=self._log, debug_test_data=test_data)
  24.   File "/app/nas/optimizer/objective/future/nas_objective_evaluate.py", line 80, in _graph_fit
  25.     trainer.fit_model(train_data=opt_dataset,
  26.   File "/app/nas/model/model_interface.py", line 123, in fit_model
  27.     self.model.fit(train_data,
  28.   File "/app/nas/model/pytorch/base_model.py", line 350, in fit
  29.     train_loss = self._one_epoch_train(train_data, optim, loss, device)
  30.   File "/app/nas/model/pytorch/base_model.py", line 297, in _one_epoch_train
  31.     running_loss += loss.detach().cpu().item()
  32. RuntimeError: CUDA error: uncorrectable ECC error encountered
  33. CUDA kernel errors might be asynchronously reported at some other API call,so the stacktrace below might be incorrect.
  34. For debugging consider passing CUDA_LAUNCH_BLOCKING=1.
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement