caparol6991

Rec popular Karol

Dec 18th, 2019
258
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
Python 4.99 KB | None | 0 0
  1. import math
  2. import pandas as pd
  3. import numpy as np
  4. import time
  5.  
  6. GR_COLS = ["user_id", "session_id", "timestamp", "step"]
  7.  
  8.  
  9. def get_submission_target(df):
  10.     """Identify target rows with missing click outs."""
  11.  
  12.     mask = df["reference"].isnull() & (df["action_type"] == "clickout item")
  13.     df_out = df[mask]
  14.  
  15.     return df_out
  16.  
  17.  
  18. def get_popularity(df):
  19.     start_time = time.time()
  20.  
  21.     # rozdziel wyswietlone hotele i ceny
  22.     action_type = df['action_type'] == "clickout item"
  23.     clicks = df.loc[action_type]
  24.  
  25.     impressions_explode = explode(clicks, "impressions")
  26.     prices_explode = explode(clicks, "prices")
  27.  
  28.     # zlicz klikniecia w kazdy hotel
  29.     clicks_count = clicks['reference'].value_counts()
  30.     clicks_count.index = clicks_count.index.astype(int)
  31.  
  32.     # zlicz ile razy hotel byl wyswietlony
  33.     views_count = impressions_explode['impressions'].value_counts()
  34.     ctr = clicks_count.divide(views_count)
  35.  
  36.     # polacz hotele z ich cenami
  37.     prices_temp = {'reference': impressions_explode.impressions, 'Price': prices_explode.prices}
  38.     prices = pd.DataFrame(prices_temp)
  39.  
  40.     # prices.set_index('reference')
  41.  
  42.     # wyrzuc wszystkie duplikujace sie wiersze z cenami hotelow
  43.     prices = prices.drop_duplicates('reference')
  44.  
  45.     # polacz klikniecia, wyswietlenia i CTR hotelu w jedno
  46.     df_combined = {'Clicks': clicks_count, 'Views': views_count, "CTR": ctr}
  47.     result = pd.DataFrame(df_combined)
  48.     result = result.rename_axis('reference').reset_index()
  49.     result = result.drop_duplicates('reference')
  50.     result = result.dropna()
  51.  
  52.     # polacz poprzedni dataframe z cenami
  53.     result2 = pd.merge(result, prices, on='reference')
  54.     result2 = result2.sort_values('Clicks', ascending=False)
  55.     avg = result2["Price"].mean()
  56.    # print(avg)
  57.    # print(result2.shape)
  58.  
  59.     # wez wyniki gdzie CTR jest wieksze od 0.5 i cena jest ponizej sredniej
  60.     result2 = result2.loc[(result2.CTR > 0.50) & (result2.Price <= avg)]
  61.    # print(result2.shape)
  62.     print(result2)
  63.     print(str(time.time() - start_time))
  64.  
  65.     return result2
  66.  
  67.  
  68. def string_to_array(s):
  69.     """Convert pipe separated string to array."""
  70.  
  71.     if isinstance(s, str):
  72.         out = s.split("|")
  73.     elif math.isnan(s):
  74.         out = []
  75.     else:
  76.         raise ValueError("Value must be either string of nan")
  77.     return out
  78.  
  79.  
  80. def explode(df_in, col_expl):
  81.     """Explode column col_expl of array type into multiple rows."""
  82.  
  83.     df = df_in.copy()
  84.     df.loc[:, col_expl] = df[col_expl].apply(string_to_array)
  85.  
  86.     df_out = pd.DataFrame(
  87.         {col: np.repeat(df[col].values,
  88.                         df[col_expl].str.len())
  89.          for col in df.columns.drop(col_expl)}
  90.     )
  91.  
  92.     df_out.loc[:, col_expl] = np.concatenate(df[col_expl].values)
  93.     df_out.loc[:, col_expl] = df_out[col_expl].apply(int)
  94.  
  95.     return df_out
  96.  
  97.  
  98. def group_concat(df, gr_cols, col_concat):
  99.     """Concatenate multiple rows into one."""
  100.  
  101.     df_out = (
  102.         df
  103.             .groupby(gr_cols)[col_concat]
  104.             .apply(lambda x: ' '.join(x))
  105.             .to_frame()
  106.             .reset_index()
  107.     )
  108.  
  109.     return df_out
  110.  
  111.  
  112. def calc_recommendation(df_expl, df_pop):
  113.     """Calculate recommendations based on popularity of items.
  114.  
  115.    The final data frame will have an impression list sorted according to the number of clicks per item in a reference data frame.
  116.  
  117.    :param df_expl: Data frame with exploded impression list
  118.    :param df_pop: Data frame with items and number of clicks
  119.    :return: Data frame with sorted impression list according to popularity in df_pop
  120.    """
  121.  
  122.     df_expl_clicks = (
  123.         df_expl[GR_COLS + ["impressions"]]
  124.             .merge(df_pop,
  125.                    left_on="impressions",
  126.                    right_on="reference",
  127.                    how="left")
  128.     )
  129.  
  130.     df_out = (
  131.         df_expl_clicks
  132.             .assign(impressions=lambda x: x["impressions"].apply(str))
  133.             .sort_values(GR_COLS + ["Clicks"],
  134.                          ascending=[True, True, True, True, False])
  135.     )
  136.  
  137.     df_out = group_concat(df_out, GR_COLS, "impressions")
  138.     df_out.rename(columns={'impressions': 'item_recommendations'}, inplace=True)
  139.  
  140.     return df_out
  141.  
  142.  
  143. def main():
  144.     train_csv = '../../data/newsmall/train.csv'
  145.     test_csv = '../../data/newsmall/test.csv'
  146.     subm_csv = '../../data/newsmall/submission_popular.csv'
  147.  
  148.     # print(f"Reading {train_csv} ...")
  149.     df_train = pd.read_csv(train_csv)
  150.     #  print(f"Reading {test_csv} ...")
  151.     df_test = pd.read_csv(test_csv)
  152.  
  153.     print("Get popular items...")
  154.     df_popular = get_popularity(df_train)
  155.  
  156.     print("Identify target rows...")
  157.     df_target = get_submission_target(df_test)
  158.  
  159.     print("Get recommendations...")
  160.     df_expl = explode(df_target, "impressions")
  161.     df_out = calc_recommendation(df_expl, df_popular)
  162.  
  163.     # print(f"Writing {subm_csv}...")
  164.     df_out.to_csv(subm_csv, index=False)
  165.  
  166.     print("Finished calculating recommendations.")
  167.  
  168.  
  169. if __name__ == '__main__':
  170.     main()
Add Comment
Please, Sign In to add comment