Advertisement
zachgordon25

Untitled

Jul 2nd, 2024
724
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
Python 1.34 KB | None | 0 0
  1. import numpy as np
  2.  
  3. # Step 1: Generate 6 random values
  4. jitter = np.random.rand(6)  # Generates 6 random numbers between 0 and 1
  5.  
  6. # Step 2: Adjust the values to have the mean of 2.5
  7. mean_target = 2.5  # The target mean for our data
  8. # Subtract the current mean from each value, then add the target mean
  9. # This shifts all values so the new mean is the target mean
  10. jitter_mean_adjusted = jitter - np.mean(jitter) + mean_target
  11.  
  12. # Step 3: Scale the values to have the desired standard deviation
  13. std_dev_target = 0.5  # The target standard deviation for our data
  14. # Calculate the scaling factor needed to achieve the target standard deviation
  15. scaling_factor = std_dev_target / np.std(jitter_mean_adjusted)
  16. print("Scaling Factor:", scaling_factor)  # Print the scaling factor for reference
  17. # Apply the scaling factor to each value
  18. final_values = jitter_mean_adjusted * scaling_factor
  19.  
  20. # Ensure the mean is exactly 2.5 again after scaling
  21. # This corrects any minor deviations in the mean due to the scaling operation
  22. final_values += mean_target - np.mean(final_values)
  23.  
  24. # Print the final adjusted values, their mean, and standard deviation to verify they meet the target
  25. print("Final values:", final_values)
  26. print("Mean:", np.mean(final_values))  # Should be very close to 2.5
  27. print("Standard Deviation:", np.std(final_values))  # Should be very close to 0.5
  28.  
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement