Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- \begin{table}[]
- \centering
- \caption{}
- \label{tab:my-table}
- \resizebox{\columnwidth}{!}{%
- \begin{tabular}{llllll}
- \hline
- \multicolumn{1}{c}{\textbf{Reference}} & \multicolumn{1}{c}{\textbf{Year}} & \multicolumn{1}{c}{\textbf{Location}} & \multicolumn{1}{c}{\textbf{Model}} & \multicolumn{1}{c}{\textbf{Target Pollutant}} & \multicolumn{1}{c}{\textbf{Evaluation Metric}} \\ \hline
- Samal et al. & 2021 & Guwahati, India & Multi-Output Convolutional LSTM & PM2.5 and PM10 & RMSE,MAE,MAPE \\
- Liu et al & 2020 & - & Adaboost.MRT & AQI & RMSE,MAE,MAPE \\
- Li et al. & 2017 & & & PM2.5 & \\
- Zheng et al & 2016 & \textbf{-} & \textbf{\begin{tabular}[c]{@{}l@{}}Episode Identification and Shape\\ Classification.\end{tabular}} & PM2.5 & \textbf{Compared Pollution Levels} \\
- Jin et al. & 2019 & & integrated mixture−toxicity & PM2.5 & Toxic Potencies,Concentrations \\
- Cohen et al. & 2017 & & Mechanism study of PM2.5 & PM2.5 & -- \\
- Harrison et al & 2018 & & Chemistry-Transport Models & PM 10 & \begin{tabular}[c]{@{}l@{}}concentrations of PM\\ 10\end{tabular} \\
- Li et al. & 2011 & & linear regression model & PM 10 & MAE,RMSE \\
- hooyberghs et al. & 2005 & - & ANN & \begin{tabular}[c]{@{}l@{}}PM\\ 10\end{tabular} & RMSE,R,Success Index \\
- goyal et al & 2006 & & ARIMA,multiple regression model & RSPM & MAE,MBE,RMSE,R\textasciicircum{}2 \\
- Prybutok et al & 2000 & & Regression and Box–Jenkins ARIMA & ozone & {\color[HTML]{2E2E2E} \textit{R2,MSE}} \\
- Dıaz-Robles et al & 2008 & & Hybrid of ARIMA and ANN & \begin{tabular}[c]{@{}l@{}}PM\\ 10\end{tabular} & R\textasciicircum{}2,E\textasciicircum{}2, ARV,RMSE, MAE,SEP,PI,BIC \\
- Konovalov et al. & 2009 & & Chemistry transport model CHIMERE & PM 10 & RMSE,R\textasciicircum{}2 \\
- Singh et al. & 2013 & & Chemistry transport model & PM10 & RMSE,R\textasciicircum{}2,ME,Success Index \\
- Singh et al. & 2013 & & \begin{tabular}[c]{@{}l@{}}single decision tree (SDT), decision tree forest (DTF), decision\\ treeboost (DTB)\end{tabular} & AQI,CAQI & SD,MAE,RMSE,R \\
- Fu et al. & 2015 & & Feed-forward neural networks (FFNN) & PM2.5,PM10 & R\textasciicircum{}2, IA, RMSE, MAE and MBE \\
- Wen et al. & 2019 & & C-LSTME,LSTM-NN, & PM 2.5 & RMSE,MAE,MAPE \\
- Zhu et al. & 2017 & & EMD-SVR-Hybrid,EMD-IMFs-Hybrid & AQI & MAE,RMSE,MAPE,IA \\
- Qin et al. & 2019 & & CNN,LSTM & PM2.5 & RMSE,Corr \\
- Ma et al. & 2019 & & LSTM, & PM 2.5 & RMSE,R\textasciicircum{}2 \\
- Li et al. & 2020 & & RF,BRT,SVM,GAM & PM 2.5,NOX & R2, ME, and RMSE \\
- Li et al. & 2016 & & SAE,STANN,SVR,ARMA,SVR & PM 2.5 & RMSE,MAPE,MAE \\
- Siwek and Osowski & 2016 & & RF & PM10, SO2, NO2 and O3. & MAE,MAPE,MAX,RMS \\
- Biancofiore et al. & 2017 & & MLR model & PM 10,PM2.5 & R, NMSE, FB and FA2 \\
- Huang and Kuo & 2018 & & CNN-LSTM & PM 2.5 & MAE, RMSE,R \\
- Chang et al. & 2020 & & SVR,GBTR,LSTM & PM 2.5 & MAE, RMSE,MAPE. \\
- Tian et al. & 2022 & & Deep Belief-BP neural network & \begin{tabular}[c]{@{}l@{}}PM2.5, PM10, O3, CO, NO2,\\ SO2\end{tabular} & RMSE \\
- Guo et al. & 2022 & & LSTM & PM 2.5 & RMSE,MAE,R\textasciicircum{}2 \\
- \end{tabular}%
- }
- \end{table}
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement