Advertisement
mayankjoin3

table1

Feb 22nd, 2023
111
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 3.03 KB | None | 0 0
  1. \begin{table}[]
  2. \centering
  3. \caption{}
  4. \label{tab:my-table}
  5. \resizebox{\columnwidth}{!}{%
  6. \begin{tabular}{llllll}
  7. \hline
  8. \multicolumn{1}{c}{\textbf{Reference}} & \multicolumn{1}{c}{\textbf{Year}} & \multicolumn{1}{c}{\textbf{Location}} & \multicolumn{1}{c}{\textbf{Model}} & \multicolumn{1}{c}{\textbf{Target Pollutant}} & \multicolumn{1}{c}{\textbf{Evaluation Metric}} \\ \hline
  9. Samal et al. & 2021 & Guwahati, India & Multi-Output Convolutional LSTM & PM2.5 and PM10 & RMSE,MAE,MAPE \\
  10. Liu et al & 2020 & - & Adaboost.MRT & AQI & RMSE,MAE,MAPE \\
  11. Li et al. & 2017 & & & PM2.5 & \\
  12. Zheng et al & 2016 & \textbf{-} & \textbf{\begin{tabular}[c]{@{}l@{}}Episode Identification and Shape\\ Classification.\end{tabular}} & PM2.5 & \textbf{Compared Pollution Levels} \\
  13. Jin et al. & 2019 & & integrated mixture−toxicity & PM2.5 & Toxic Potencies,Concentrations \\
  14. Cohen et al. & 2017 & & Mechanism study of PM2.5 & PM2.5 & -- \\
  15. Harrison et al & 2018 & & Chemistry-Transport Models & PM 10 & \begin{tabular}[c]{@{}l@{}}concentrations of PM\\ 10\end{tabular} \\
  16. Li et al. & 2011 & & linear regression model & PM 10 & MAE,RMSE \\
  17. hooyberghs et al. & 2005 & - & ANN & \begin{tabular}[c]{@{}l@{}}PM\\ 10\end{tabular} & RMSE,R,Success Index \\
  18. goyal et al & 2006 & & ARIMA,multiple regression model & RSPM & MAE,MBE,RMSE,R\textasciicircum{}2 \\
  19. Prybutok et al & 2000 & & Regression and Box–Jenkins ARIMA & ozone & {\color[HTML]{2E2E2E} \textit{R2,MSE}} \\
  20. Dıaz-Robles et al & 2008 & & Hybrid of ARIMA and ANN & \begin{tabular}[c]{@{}l@{}}PM\\ 10\end{tabular} & R\textasciicircum{}2,E\textasciicircum{}2, ARV,RMSE, MAE,SEP,PI,BIC \\
  21. Konovalov et al. & 2009 & & Chemistry transport model CHIMERE & PM 10 & RMSE,R\textasciicircum{}2 \\
  22. Singh et al. & 2013 & & Chemistry transport model & PM10 & RMSE,R\textasciicircum{}2,ME,Success Index \\
  23. Singh et al. & 2013 & & \begin{tabular}[c]{@{}l@{}}single decision tree (SDT), decision tree forest (DTF), decision\\ treeboost (DTB)\end{tabular} & AQI,CAQI & SD,MAE,RMSE,R \\
  24. Fu et al. & 2015 & & Feed-forward neural networks (FFNN) & PM2.5,PM10 & R\textasciicircum{}2, IA, RMSE, MAE and MBE \\
  25. Wen et al. & 2019 & & C-LSTME,LSTM-NN, & PM 2.5 & RMSE,MAE,MAPE \\
  26. Zhu et al. & 2017 & & EMD-SVR-Hybrid,EMD-IMFs-Hybrid & AQI & MAE,RMSE,MAPE,IA \\
  27. Qin et al. & 2019 & & CNN,LSTM & PM2.5 & RMSE,Corr \\
  28. Ma et al. & 2019 & & LSTM, & PM 2.5 & RMSE,R\textasciicircum{}2 \\
  29. Li et al. & 2020 & & RF,BRT,SVM,GAM & PM 2.5,NOX & R2, ME, and RMSE \\
  30. Li et al. & 2016 & & SAE,STANN,SVR,ARMA,SVR & PM 2.5 & RMSE,MAPE,MAE \\
  31. Siwek and Osowski & 2016 & & RF & PM10, SO2, NO2 and O3. & MAE,MAPE,MAX,RMS \\
  32. Biancofiore et al. & 2017 & & MLR model & PM 10,PM2.5 & R, NMSE, FB and FA2 \\
  33. Huang and Kuo & 2018 & & CNN-LSTM & PM 2.5 & MAE, RMSE,R \\
  34. Chang et al. & 2020 & & SVR,GBTR,LSTM & PM 2.5 & MAE, RMSE,MAPE. \\
  35. Tian et al. & 2022 & & Deep Belief-BP neural network & \begin{tabular}[c]{@{}l@{}}PM2.5, PM10, O3, CO, NO2,\\ SO2\end{tabular} & RMSE \\
  36. Guo et al. & 2022 & & LSTM & PM 2.5 & RMSE,MAE,R\textasciicircum{}2 \\
  37. \end{tabular}%
  38. }
  39. \end{table}
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement