Advertisement
pleasedontcode

"Sentiment Analysis" rev_01

Jan 12th, 2025
78
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
  1. /********* Pleasedontcode.com **********
  2.  
  3.     Pleasedontcode thanks you for automatic code generation! Enjoy your code!
  4.  
  5.     - Terms and Conditions:
  6.     You have a non-exclusive, revocable, worldwide, royalty-free license
  7.     for personal and commercial use. Attribution is optional; modifications
  8.     are allowed, but you're responsible for code maintenance. We're not
  9.     liable for any loss or damage. For full terms,
  10.     please visit pleasedontcode.com/termsandconditions.
  11.  
  12.     - Project: "Sentiment Analysis"
  13.     - Source Code NOT compiled for: Arduino Pro Mini 3.3V
  14.     - Source Code created on: 2025-01-12 10:17:31
  15.  
  16. ********* Pleasedontcode.com **********/
  17.  
  18. /****** SYSTEM REQUIREMENTS *****/
  19. /****** SYSTEM REQUIREMENT 1 *****/
  20.     /* iam doing sentement anylsysis right then this code */
  21.     /* executed successuffly with accuracy 97 so here i */
  22.     /* also understand x is for my data and y represent */
  23.     /* vector value 0 and1 but these step what are their */
  24.     /* use along with this can you please tell their each */
  25. /****** END SYSTEM REQUIREMENTS *****/
  26.  
  27. /* START CODE */
  28.  
  29. /****** DEFINITION OF LIBRARIES *****/
  30. // Include necessary libraries for sentiment analysis
  31. // Note: The following libraries are placeholders as the actual implementations may not exist for Arduino
  32. #include "CountVectorizer.h" // For feature extraction
  33. #include "MultinomialNB.h"   // For the Naive Bayes model
  34. #include "accuracy_score.h"  // For evaluating model accuracy
  35. #include "classification_report.h" // For generating classification reports
  36. #include "train_test_split.h" // For splitting the dataset
  37.  
  38. /****** FUNCTION PROTOTYPES *****/
  39. void setup(void);
  40. void loop(void);
  41.  
  42. // Instantiate objects for the libraries
  43. CountVectorizer vectorizer; // Object for feature extraction
  44. MultinomialNB model;         // Object for the Naive Bayes model
  45.  
  46. void setup(void)
  47. {
  48.     // put your setup code here, to run once:
  49.  
  50.     // Step 1: Feature Extraction using TF-IDF
  51.     // This step transforms the text data into a numerical format that can be used for modeling.
  52.     // X = vectorizer.fit_transform(df['Data']) // Placeholder for feature extraction
  53.  
  54.     // Step 2: Label Encoding
  55.     // This step converts categorical labels ('ham' and 'spam') into numerical values (0 and 1).
  56.     // y = df['Review'].map({'ham': 0, 'spam': 1}) // Placeholder for label encoding
  57.  
  58.     // Step 3: Splitting the Data
  59.     // This step divides the dataset into training and testing sets to evaluate the model's performance.
  60.     // X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) // Placeholder for data splitting
  61.  
  62.     // Step 4: Model Selection and Training
  63.     // This step selects the Naive Bayes model and trains it using the training data.
  64.     // model.fit(X_train, y_train) // Placeholder for model training
  65.  
  66.     // Step 5: Making Predictions
  67.     // This step uses the trained model to make predictions on the test data.
  68.     // y_pred = model.predict(X_test) // Placeholder for making predictions
  69.  
  70.     // Step 6: Evaluating the Model
  71.     // This step evaluates the model's performance by calculating accuracy and generating a classification report.
  72.     // print("Accuracy:", accuracy_score(y_test, y_pred)) // Placeholder for accuracy evaluation
  73.     // print(classification_report(y_test, y_pred)) // Placeholder for classification report
  74. }
  75.  
  76. void loop(void)
  77. {
  78.     // put your main code here, to run repeatedly:
  79.  
  80. }
  81.  
  82. /* END CODE */
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement