Advertisement
logicmoo

Untitled

Jul 22nd, 2018
604
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
Prolog 18.83 KB | None | 0 0
  1.   /*---------------------------------------------------------*/
  2.   /*                                                         */
  3.   /*                       'SYMDIFF'                         */
  4.   /*                                                         */
  5.   /*  Symbolic Differentiation and Algebraic Simplification  */
  6.   /*                                                         */
  7.   /*    The declarative semantics of Prolog are a powerful   */
  8.   /*  tool for problems involving symbolic manipulation.     */
  9.   /*    In this example the rules for differentiation are    */
  10.   /*  expressed as a set of clauses, where, provided that    */
  11.   /*  the head matches the expression in question, the body  */
  12.   /*  furnishes the appropriate result. This result in turn  */
  13.   /*  is passed to the simplifying clauses which operate on  */
  14.   /*  the same principle, but obviously correspond to a      */
  15.   /*  different set of (simplifying) rules.                  */
  16.   /*                                                         */
  17.   /*---------------------------------------------------------*/
  18.  
  19.  
  20. /*  This is the main predicate. */        
  21.  
  22. symdiff :-
  23.    nl,
  24.    write('SYMDIFF : Symbolic Differentiation and '),
  25.    write('Algebraic Simplification. Version 1.0'), nl,
  26.    symdiff1.
  27.  
  28.  
  29.   /*  symdiff1 controls the main processing; It prompts  */
  30.   /*  the user for data, differentiates the input,       */
  31.   /*  simplifies the result and then displays it on      */
  32.   /*  the terminal.                                      */
  33.  
  34. symdiff1  :-
  35.    write('Enter a symbolic expression, or "stop" '),
  36.    read(Exp),
  37.    process( Exp ).
  38.  
  39.  
  40. process( stop ) :- !.
  41.  
  42. process( Exp ) :-
  43.    write('Differentiate w.r.t. :'),
  44.    read(Wrt),
  45.    process(Exp,Wrt),
  46.    symdiff1.
  47.    
  48. process( Exp ,Wrt ):-
  49.    process( Exp ,Wrt, Sdiff),
  50.    nl,
  51.    write('Differential w.r.t '), write(Wrt),
  52.    write(' is '),
  53.    write(Sdiff), nl, nl.
  54.    
  55.  
  56. process( Exp ,Wrt, Sdiff):-
  57.    d(Exp, Wrt, Diff ),
  58.    simplify1(Wrt, Diff, Sdiff ),!.
  59.  
  60.  
  61.   /*  The following clauses constitute the differentiation   */
  62.   /*  rules, some of which are recursive. Note too the use   */
  63.   /*  of the cut which ensures that once a special case has  */
  64.   /*  been identified, backtracking will not attempt to find */
  65.   /*  an alternative solution.                               */
  66.  
  67.  
  68. %%%%%%%%%%%%%%%%%%%%%%%%%%
  69. %%%%%%%%%%%%%%%%%%%%%%%%%%
  70. % process(x^(x*log(cos(x))), x)
  71. % process(diff(x^(x*log(cos(x))), x), N).
  72. % N = x^(exp(log(1/x))-1)*(exp(log(1/x))+ - (1)/(x*x)/(1/x)*exp(log(1/x))*x*log(x))*cos(x^exp(log(1/x)))
  73. % d(expr, var, deriv)
  74. %%%%%%%%%%%%%%%%%%%%%%%%%%
  75.  
  76. d(E, _, E) :- var(E),!.
  77.  
  78. d(d(Expr,Wrt), X, E):- !,d(diff(Expr,Wrt), X, E).
  79. d(d(Expr,Wrt,D), X, E):- !,d(diff(Expr,Wrt,D), X, E).
  80. d(diff(Expr,Wrt), _X, E):- !, d(Expr, Wrt, E).
  81. d(diff(Expr,Wrt,1), X, E):- !, d(diff(Expr,Wrt), X, E).
  82. % d(diff(Expr,Wrt,2), X, E):- !, d(diff(Expr,Wrt), X, E).
  83. % d(f(Wrt), Wrt, 1):- !.
  84. d( U**C, X, O  ) :- !, d( U^C, X, O  ).
  85.  
  86. % constant
  87. d(E, _, 0) :- numeric_1(E),!.
  88.  
  89. %d( C, _X, 0 ):- atomic(C).        /* If C is a constant then */
  90.                                    /* d(C)/dX is 0            */
  91. %d( X, X, 1 ):- !.                 /* d(X) w.r.t. X is 1      */
  92.  
  93. % the same variable
  94. d(E, V, 0) :- atom(E), E \== V, !.
  95.    
  96. % other variables
  97. d(E, V, 1) :-  atom(E), E == V,!.
  98.    
  99.  
  100. d( U+V, X, A+B ):-                 /* d(U+V)/dX = A+B where   */
  101.    d( U, X, A ),                   /* A = d(U)/dX and         */
  102.    d( V, X, B ).                   /* B = d(V)/dX             */
  103.  
  104. d( U-V, X, A-B ):-                 /* d(U-V)/dX = A-B where   */
  105.    d( U, X, A ),                   /* A = d(U)/dX and         */
  106.    d( V, X, B ).                   /* B = d(V)/dX             */
  107.  
  108. d( C*U, X, C*A ):-               /* d(C*U)/dX = C*A where     */
  109.    atomic(C),                    /* C is a numeric_1 or variable */
  110.    C \= X,                       /* not equal to X and        */
  111.    d( U, X, A ), !.              /* A = d(U)/dX               */
  112.  
  113. d( U*V, X, B*U+A*V ):-           /* d(U*V)/dX = B*U+A*V where */
  114.    d( U, X, A ),                 /* A = d(U)/dX and           */
  115.    d( V, X, B ).                 /* B = d(V)/dX               */
  116.  
  117. d( U/V, X, (A*V-B*U)/(V*V) ):- /* d(U/V)/dX = (A*V-B*U)/(V*V) */
  118.    d( U, X, A),                /* where A = d(U)/dX and       */
  119.    d( V, X, B).                /*       B = d(V)/dX           */
  120.  
  121. d( U^C, X, C*A*U^(C-1) ):-       /* d(U^C)/dX = C*A*U^(C-1)   */
  122.    atomic(C),                    /* where C is a numeric_1 or    */
  123.    C\=X,                         /* variable not equal to X   */
  124.    d( U, X, A ).                 /* and d(U)/dX = A           */
  125.  
  126. d( U^C, X, C*A*U^(C-1) ):-       /* d(U^C)/dX = C*A*U^(C-1)   */
  127.    C = -(C1), atomic(C1),        /* where C is a negated numeric_1 or  */
  128.    C1\=X,                        /* variable not equal to X   */
  129.    d( U, X, A ).                 /* and d(U)/dX = A           */
  130.  
  131. % (f^g)' = f^(g-1)*(gf' + g'f logf)
  132. d(F^G, V, FF) :- !,
  133.     d(F, V, Fd),
  134.     d(G, V, Gd),
  135.     opt_sub(AA, G, 1),
  136.     opt_mul(BB, G,Fd),
  137.     opt_mul(CC, Gd, F),
  138.     opt_mul(DD, CC, log(F)),
  139.     opt_sum(EE, BB, DD),
  140.     opt_mul(FF, F^(AA), EE).
  141.  
  142. d( sin(W), X, Z*cos(W) ):-       /* d(sin(W))/dX = Z*cos(W)   */
  143.    d( W, X, Z).                  /* where Z = d(W)/dX         */
  144.  
  145. d( exp(W), X, Z*exp(W) ):-       /* d(exp(W))/dX = Z*exp(W)   */
  146.    d( W, X, Z).                  /* where Z = d(W)/dX         */
  147.  
  148. d( log(W), X, Z/W ):-            /* d(log(W))/dX = Z/W        */
  149.    d( W, X, Z).                  /* where Z = d(W)/dX         */
  150.  
  151. d( cos(W), X, -(Z*sin(W)) ):-    /* d(cos(W))/dX = Z*sin(W)   */
  152.    d( W, X, Z).                  /* where Z = d(W)/dX         */
  153.  
  154.  
  155. d(_, _, _):-!,fail.
  156.  
  157. % functions
  158. % (h(g))' = h'(g) * g'
  159. d(sin(E), V, M) :-  d(E,V, Ed), opt_mul(M, Ed, cos(E)).
  160. d(cos(E), V, K) :-  d(E,V, Ed), opt_mul(M, Ed,sin(E)), opt_sub(K, 0, M).
  161.    
  162. d(tan(E), V, F) :-
  163.     d(E,V, Ed),
  164.     opt_mul(A, Ed, 2),
  165.     opt_mul(B, 2, E),
  166.     opt_mul(C, 2, cos(B)),
  167.     opt_sum(D, C, 1),
  168.     opt_div(F, A, D).
  169.  
  170. /*
  171. % sum
  172. d(E1 + E2, V, W) :-
  173.     d(E1, V, Ed1),
  174.     d(E2, V, Ed2),
  175.     opt_sum(W, Ed1, Ed2).
  176.  
  177. % subtraction
  178. d(E1 - E2, V, W) :- !,
  179.     d(E1, V, Ed1),
  180.     d(E2, V, Ed2),
  181.     opt_sub(W, Ed1, Ed2).
  182.    
  183. % (fg)' = f'g + fg'
  184. d(E1 * E2, V, W) :-
  185.     d(E1, V, Ed1),
  186.     d(E2, V, Ed2),
  187.     opt_mul(L, Ed1, E2),
  188.     opt_mul(P, E1, Ed2),
  189.     opt_sum(W, L, P).
  190.  
  191.  
  192. % (f/g)' = (f'g - fg') / (g*g)
  193. d(E1 / E2, V, E) :-
  194.     d(E1, V, Ed1),
  195.     d(E2, V, Ed2),
  196.     opt_mul(A, Ed1,E2),
  197.     opt_mul(B, E1,Ed2),
  198.     opt_mul(C, E2,E2),
  199.     opt_sub(D, A, B),
  200.     opt_div(E, D,C).
  201. */
  202.    
  203.  
  204. d(exp(E), V, F) :-
  205.     d(E,V, Ed),
  206.     opt_mul(F, Ed, exp(E)).
  207.  
  208. d(log(E), V, F) :-
  209.     d(E,V, Ed),
  210.     opt_div(F, Ed, E).
  211.  
  212.  
  213.   /*  The following clauses are rules for the simplification  */
  214.   /*  of the result of the differentiation process. For       */
  215.   /*  example, multiples of zero are dropped, terms gathered  */
  216.   /*  together where possible and factorisation is attempted. */
  217.   /*  (It should be noted that in this program only adjacent  */
  218.   /*  terms are candidates for simplification.)               */
  219.  
  220. simp(_, X, X ):-          /* an atom or numeric_1 is simplified */
  221.     atomic(X), !.
  222.  
  223. simp(_, X+0, Y ):-        /* terms of value zero are dropped  */
  224.    simp(_, X, Y ).
  225.  
  226. simp(_, 0+X, Y ):-        /* terms of value zero are dropped  */
  227.    simp(_, X, Y ).
  228.  
  229. simp(_, X-0, Y ):-        /* terms of value zero are dropped  */
  230.    simp(_, X, Y ).
  231.  
  232. simp(_, 0-X, -(Y) ):-     /* terms of value zero are dropped  */
  233.    simp(_, X, Y ).
  234.  
  235. simp(_, A+B, C ):-        /* sum numbers */
  236.    numeric_1(A),
  237.    numeric_1(B),
  238.    C is A+B.
  239.  
  240. simp(_, A-A, 0 ).         /* evaluate differences */
  241.  
  242. simp(_, A-B, C ):-        /* evaluate differences */
  243.    numeric_1(A),
  244.    numeric_1(B),
  245.    C is A-B.
  246.  
  247. simp(_, _X * 0, 0 ).         /* multiples of zero are zero */
  248.  
  249. simp(_, 0* _X, 0 ).         /* multiples of zero are zero */
  250.  
  251. simp(_, 0/_X, 0 ).         /* numerators evaluating to zero are zero */
  252.  
  253. simp(_, X*1, X ).         /* one is the identity for multiplication */
  254.  
  255. simp(_, 1*X, X ).         /* one is the identity for multiplication */
  256.  
  257. simp(_, X/1, X ).         /* divisors of one evaluate to the numerator */
  258.  
  259. simp(_, X/X, 1 ) :- !.
  260.  
  261. simp(_, X^1, X ) :- !.
  262.  
  263. simp(_, _X^0, 1 ) :- !.
  264.  
  265. simp(_, X*X, X^2 ) :- !.
  266.  
  267. simp(_, X*X^A, Y ) :-
  268.    simp(_, X^(A+1), Y ), !.
  269.  
  270. simp(_, X^A*X, Y ) :-
  271.    simp(_, X^(A+1), Y ), !.
  272.  
  273. simp(_, A*B, X ) :-       /* do evaluation if both are numbers  */
  274.    numeric_1( A ),
  275.    numeric_1( B ),
  276.    X is A*B.
  277.  
  278. simp(_, A*X+B*X, Z ):-    /* factorisation and recursive */
  279.    A\=X, B\=X,          /* simplification              */
  280.    simp(_, (A+B)*X, Z ).
  281.  
  282. simp(_, (A+B)*(A-B), X^2-Y^2 ):-   /* difference of two squares */
  283.    simp(_, A, X ),
  284.    simp(_, B, Y ).
  285.  
  286. simp(_, X^A/X^B, X^C ):-     /* quotient of numeric_1 powers of X */
  287.    numeric_1(A), numeric_1(B),
  288.    C is A-B.
  289.  
  290. simp(_, A/B, X ) :-       /* do evaluation if both are numbers  */
  291.    numeric_1( A ),
  292.    numeric_1( B ),
  293.    X is A/B.
  294.  
  295. simp(_, A^B, X ) :-       /* do evaluation if both are numbers  */
  296.    numeric_1( A ),
  297.    numeric_1( B ),
  298.    X is A^B.
  299.  
  300. simp(_, W+X, Q ):-        /* catchall */
  301.    simp(_, W, Y ),
  302.    simp(_, X, Z ),
  303.    ( W \== Y ; X \== Z ), /* ensure some simplification has taken place */
  304.    simp(_, Y+Z, Q ).
  305.  
  306. simp(_, W-X, Q ):-        /* catchall */
  307.    simp(_, W, Y ),
  308.    simp(_, X, Z ),
  309.    ( W \== Y ; X \== Z ), /* ensure some simplification has taken place */
  310.    simp(_, Y-Z, Q ).
  311.  
  312. simp(_, W*X, Q ):-        /* catchall */
  313.    simp(_, W, Y ),
  314.    simp(_, X, Z ),
  315.    ( W \== Y  ; X \== Z ), /* ensure some simplificaion has taken place */
  316.    simp(_, Y*Z, Q ).
  317.  
  318. simp(_, A/B, C ) :-
  319.    simp(_, A, X ),
  320.    simp(_, B, Y ),
  321.    ( A \== X ; B \== Y ),
  322.    simp(_, X/Y, C ).
  323.  
  324. simp(_, X^A, C ) :-
  325.    simp(_, A, B ),
  326.    A \== B,
  327.    simp(_, X^B, C).
  328.  
  329. simp(_, X, X ).           /* if all else fails... */              
  330.  
  331.  
  332. %numeric_1(A) :- integer(A).
  333.  
  334. numeric_1(A) :- number(A),!.
  335. numeric_1(A) :- notrace(catch((_ is A),_,fail)).
  336.  
  337. %% derivatives.pl -- Chapter 12, Section 12.2.3
  338. %% Last Modified: 2/4/14
  339. %% This is a Prolog program which computes derivatives
  340. %% of polynomials.
  341. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  342. % COMPUTING DERIVATIVES of POLYNOMIALS
  343. % For the purpose of this program polynomials are functions
  344. % constructed from a variable x, integers, function symbols
  345. % +, -, * and ^, and parentheses. Exponentiation X^N is
  346. % defined for nonnegative integer N.
  347. % The derivative is only computed once. Multiple calls can lead
  348. % to an infinite loop.
  349.  
  350. %:-use_module(library(lists)). % not needed for SWI Prolog
  351.  
  352. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  353. % derivative(F,DF) computes a derivative DF of a polynomial F.
  354. % The result is given in canonical form.
  355. % type F, DF - polynomials.
  356. % mode derivative(+,-)
  357.  
  358.  
  359. derivative(F,DF) :-
  360.     XX = x,
  361.     must(d(F,XX,G)),
  362.     must(simplify1(XX,G,DF)),!.
  363.  
  364. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  365. % der(XX,F,DF) computes a derivative DF of a polynomial F.
  366. % type F, DF - polynomials.
  367. % mode der(XX,+,-).
  368.  
  369. /*
  370. der(_XX,N,0) :-
  371.     numeric_1(N).
  372. der(XX,XX,1).
  373. der(XX,-XX,-1).
  374. der(_XX,_F^0,0).
  375. der(XX,F^N, N*F^M*DF) :- numeric_1(N),
  376.     N>=1,
  377.     M is N-1,
  378.     der(XX,F,DF).
  379. der(XX,E1*E2, E1*DE2 + E2*DE1) :-
  380.     der(XX,E1,DE1),
  381.     der(XX,E2,DE2).
  382. der(XX,E1+E2, DE1+DE2) :-
  383.     der(XX,E1,DE1),
  384.     der(XX,E2,DE2).
  385. der(XX,E1-E2,DE1-DE2) :-
  386.     der(XX,E1,DE1),
  387.     der(XX,E2,DE2).
  388. der(XX,-(E),DE) :-
  389.     der(XX,(-1)*E,DE).
  390. */
  391. der(XX,I,O):- d(I,XX,O).
  392.  
  393. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  394. %To simplify3a the resulting derivative we represent polynomials
  395. %as lists of the form [...[Ci,Ni]...] where [Ci,Ni] corresponds
  396. %to the term Ci*x^Ni. Polynomials, written in this form will be
  397. %called l-polynomials. The derivative DF of F computed
  398. %by der(XX,F,DF) will be translated into equivalent l-polynomial,
  399. %written in canonical form and transformed back into the term form.
  400. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  401. % simplify3a(x,P,SP) iff SP is a canonical form of a polynomial P
  402. % type: P, SP - polynomials
  403. % mode simplify3a(+,+,?)
  404.  
  405. simplify3a(XX,P,SPO) :-
  406.   simplify1(XX,P,SP),!,
  407.   (P \=@=SP -> simplify3a(XX,SP,SPO) ; SPO=SP).
  408.  
  409. simplify1(XX,P0,SP) :-
  410.     must(simp(_,P0,P)),
  411.     freeze(XX,atom(XX)), % dmiles
  412.     must(transform(XX,P,TP)),
  413.     must_or_fake(add_similar(TP,S)),
  414.     must_or_fake(remove_zero(S,S1)),
  415.     must_or_fake(poly_sort(S1,S2)),
  416.     (back_to_terms(XX,S2,SP)->true;S2=SP).
  417. %simplify1(_,SP,SP).
  418.  
  419. must_or_fake(P):- must( P=..[_,A,B]),!,(call(P)->true;A=B).
  420.  
  421. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  422. % transform(x,T,[[C1,N1],...,[Ck,Nk]]) implies that
  423. % T = C1*x^N1 +...+ Ck*x^Nk.
  424. % type: T - polynomial, C - integer, N - nonnegative integer.
  425. % mode: transform(XX,+,?).
  426.  
  427. transform(_XX,C,[[C,0]]) :-
  428.     integer(C),!.
  429. transform(XX,YY,[[1,1]]):- XX=@=YY,!.
  430. transform(XX,-YY,[[-1,1]]):- XX=@=YY,!.
  431. transform(XX,A*B,L) :-
  432.     transform(XX,A,L1),
  433.     transform(XX,B,L2),
  434.     multiply_l(L1,L2,L).
  435. transform(XX,A0^N0,L) :-
  436.      simplify3a(XX,N0,N),
  437.      simplify3a(XX,A0,A),
  438.      transform(XX,A,L1),
  439.      get_degree(L1,N,L),!.
  440. transform(XX,A+B,RT) :-
  441.      transform(XX,A,RA),
  442.      transform(XX,B,RB),
  443.      append(RA,RB,RT).
  444. transform(XX,A-B,RT) :-
  445.      transform(XX,A,RA),
  446.      transform(XX,-B,RB),
  447.      append(RA,RB,RT).
  448. transform(XX,Neg,R) :- unnegative(Neg,A),!,
  449.      transform(XX,(-1)*A,R).
  450. transform(_XX,X,X).
  451.  
  452. unnegative(Neg,A):- Neg = -(A),!.
  453. % unnegative(Neg,A):- A<0, A is -Neg.
  454.  
  455. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  456. % multiply_l(L1,L2,L) L is the product of L1 and L2
  457. % type: L1,L2,L - l-polynomials
  458. % mode: multiply_l(+,+,-)
  459.  
  460. multiply_one(_,[],[]).
  461. multiply_one([C1,N1],[[C2,N2]|R],[[C,N]|T]) :-
  462.     notrace(catch((C is C1*C2, N is N1+N2),E,(wdmsg(E),fail))),
  463.     multiply_one([C1,N1],R,T).
  464.  
  465. multiply_l([],_,[]).
  466. multiply_l([H1|T1],T2,T) :-
  467.     multiply_one(H1,T2,R1),
  468.     multiply_l(T1,T2,R2),
  469.     append(R1,R2,T).
  470.  
  471. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  472. % get_degree(L1,N,L) L is L1^N
  473. % type: L1,L - l-polynomials, N - nonnegative integer
  474. % mode: get_degree(+,+,-)
  475.  
  476. get_degree(_L1,0,[[1,0]]).
  477. get_degree(L1,1,L1).
  478. get_degree(L1,N,L) :-
  479.     number(N),
  480.     N > 1,
  481.     M is N-1,
  482.     get_degree(L1,M,L2),
  483.     multiply_l(L1,L2,L).
  484.  
  485. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  486. % add_similar(L1,L2) implies that L2 is the result of
  487. % adding up similar terms of L2.
  488. % type: L1 and L2 are l-polynomials.
  489. % mode: add_similar(+,?)
  490.  
  491. add_similar([],[]).
  492. add_similar([[C1,N]|T],S) :-
  493.     append(A,[[C2,N]|B],T),
  494.     C is C1+C2,
  495.     append(A,[[C,N]|B],R),
  496.     add_similar(R,S).
  497.  
  498. add_similar([[C,N]|T],[[C,N]|ST]) :-
  499.     not_in(N,T),
  500.     add_similar(T,ST).
  501.  
  502. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  503. % not_in(N,L) holds if an l-polynomial L does not contain
  504. % a term with degree N
  505. % type: N - nonnegative integer, L l-polynomial
  506. % mode: not_in(+,+)
  507.  
  508. not_in(_,[]).
  509. not_in(_,[[]]).
  510. not_in(N,[[_,M]|T]) :-
  511.      is_neq(N,M),
  512.      not_in(N,T).
  513.  
  514. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  515. % remove_zero(L1,L2) iff list L2 is obtained from list L1
  516. % by removing terms of the form [0,N].
  517. % type: L1,L2  l-polynomilas
  518. % mode: remove_zero(+,?)
  519.  
  520. remove_zero([],[]).
  521. remove_zero([[0,_]|T],T1) :-
  522.     remove_zero(T,T1).
  523. remove_zero([[C,N]|T],[[C,N]|T1]) :-
  524.     is_neq(C,0),
  525.     remove_zero(T,T1).
  526.  
  527. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  528. % poly_sort(L1,L2) sorts l-polynomial L1 in decreasing order  
  529. % of exponents and stores the result in L2.
  530. % type: L1,L2  l-polynomilas
  531. % mode: poly_sort(+,-)
  532.  
  533. poly_sort([X|Xs],Ys) :-
  534.      poly_sort(Xs,Zs),
  535.      insert(X,Zs,Ys).
  536. poly_sort([],[]).
  537.  
  538. insert(X,[],[X]).
  539. insert(X,[Y|Ys],[Y|Zs]) :-
  540.      greater(Y,X),
  541.      insert(X,Ys,Zs).
  542. insert(X,[Y|Ys],[X,Y|Ys]) :-
  543.      greatereq(X,Y).
  544.  
  545. greater([_,N1],[_,N2]) :-
  546.      N1 > N2.
  547.  
  548. greatereq([_,N1],[_,N2]) :-
  549.      N1 >= N2.
  550.  
  551. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  552. % back_to_terms(X,L,T) computes a term-representation T of L.
  553. % L must be an l-polynomial sorted in decreasing order of
  554. % exponents and not containing terms of the form [0,N].
  555. % type: L l-polynomial, T polynomial.
  556. % mode: back_to_terms(+,+,?)
  557.  
  558. back_to_terms(XX,[[1,1]],XX).
  559. back_to_terms(XX,[[-1,1]],-XX).
  560. back_to_terms(_XX,[[C,0]],C) :-
  561.      integer(C).
  562. back_to_terms(XX,[[1,N]],XX^N):-
  563.       is_neq(N,0),
  564.       is_neq(N,1).
  565. back_to_terms(XX,[[-1,N]],-XX^N):-
  566.       is_neq(N,0),
  567.       is_neq(N,1).
  568. back_to_terms(XX,[[C,1]],C*XX):-
  569.       is_neq(C,1),
  570.       is_neq(C,-1).
  571. back_to_terms(XX,[[C,N]],C*XX^N):-
  572.      is_neq(N,1),
  573.      is_neq(C,1),
  574.      is_neq(C,-1).
  575. back_to_terms(XX,L,F+T) :-
  576.      append(L1,[[C,N]],L),
  577.      is_neq(L1,[]),
  578.      C > 0,
  579.      back_to_terms(XX,L1,F),
  580.      back_to_terms(XX,[[C,N]],T).
  581. back_to_terms(XX,L,F-T) :-
  582.      append(L1,[[C,N]],L),
  583.      is_neq(L1,[]),
  584.      C < 0,
  585.      abs(C,AC),
  586.      back_to_terms(XX,L1,F),
  587.      back_to_terms(XX,[[AC,N]],T).
  588.  
  589. eq(X,X).
  590. is_neq(X,Y) :-
  591.     \+ eq(X,Y).
  592. abs(X,X) :-
  593.     integer(X),
  594.     X >= 0.
  595. abs(X,Y) :-
  596.     integer(X),
  597.     X < 0,
  598.     Y is (-1)*X.
  599.  
  600.  
  601. % dee(+variable, +expression, -derivative)
  602. dee(X, X, 1).
  603. dee(X, Y, 0) :- atomic(Y), X \= Y.
  604.  
  605. dee(X, U + W, DU + DW) :- aux(X, U, W, DU, DW).
  606. dee(X, U - W, DU - DW) :- aux(X, U, W, DU, DW).
  607.  
  608. dee(X, U * W, U * DW + W * DU) :- aux(X, U, W, DU, DW).
  609.  
  610. dee(X, -U, -DU) :- dee(X, U, DU).
  611.  
  612. aux(X, U, W, DU, DW) :-
  613.     dee(X, U, DU),
  614.     dee(X, W, DW).
  615.  
  616. % Rather than a larger class of symbolic expressions,
  617. % one might be tempted to implement a simplifier :-)
  618. %
  619. % | ?-
  620. /*
  621.  dee(x, (x + c) * (x - 1), D),            
  622.       dee(x, x * (x - 1) + c * (x - 1), E),
  623.       dee(x, x * x - x + c * x - c, F).    
  624. */
  625. %
  626. % D = (x+c)*(1-0)+(x-1)*(1+0)
  627. % E = x*(1-0)+(x-1)*1+(c*(1-0)+(x-1)*0)
  628. % F = x*1+x*1-1+(c*1+x*0)-0 ? ;
  629. %
  630. % no
  631.  
  632.  
  633. opt_sum(X, X, 0).
  634. opt_sum(Y, 0, Y).
  635.  
  636. opt_sum(W, X, Y) :-
  637.     numeric_1(X),
  638.     numeric_1(Y),
  639.     W is X + Y.
  640.  
  641. opt_sum(2*X, X, Y) :-
  642.     X == Y.
  643.    
  644. opt_sum(X+Y, X, Y).
  645.  
  646. %%%%%%%%%%%%%%%%%%%%%%%%%%
  647. opt_sub(X, X, 0).
  648. opt_sub(-Y, 0, Y).
  649.  
  650. opt_sub(W, X, Y) :-
  651.     numeric_1(X),
  652.     numeric_1(Y),
  653.     W is X - Y.
  654.  
  655. opt_sub(0, X, Y) :-
  656.     X == Y.
  657.    
  658. opt_sub(X-Y, X, Y).
  659.  
  660. %%%%%%%%%%%%%%%%%%%%%%%%%%
  661. opt_mul(0, 0, _).
  662. opt_mul(0, _, 0).
  663.  
  664. opt_mul(Y, 1, Y).
  665. opt_mul(X, X, 1).
  666.  
  667. opt_mul(Y, X, Y) :-
  668.     X == 1.
  669.  
  670. opt_mul(W, X, Y) :-
  671.     numeric_1(X),
  672.     numeric_1(Y),
  673.     W is X * Y.
  674.  
  675. opt_mul(X*Y, X, Y).
  676.  
  677. %%%%%%%%%%%%%%%%%%%%%%%%%%
  678. opt_div(_,_,0) :-
  679.     throw(error(evaluation_error(zero_divisor),(is)/2)).
  680.    
  681. opt_div(0, 0, _N).
  682.  
  683. opt_div(X, X, 1).
  684.  
  685. opt_div(1, X, Y) :-
  686.     X == Y.
  687.    
  688. opt_div(W, X, Y) :-
  689.     numeric_1(X),
  690.     numeric_1(Y),
  691.     W is X / Y.
  692.  
  693. opt_div(X/Y, X, Y).
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement