Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- library(lpSolveAPI)
- library(doParallel)
- library(foreach)
- library(compiler)
- #library(datamart)
- #' internal function used by ds_user_parallel
- #' assign capacities to workload for one region and determines transferable workload
- ds_user <- function(
- workload, capacity, min_workertype, min_worktype, region, month_map, NbMonth, categ_map, worktype_map, NbWT, Nbtot, NbCat, dimsToIndex,
- no_work, max_offshore
- ) {
- if(length(region)!=1) stop("region must be character of length 1.")
- ### set up lp
- # the first Nbtot are the decision variables we are interested in (effort per month/work_type/categ/workplace/work_source). These do not
- # go into the objective (zero coefficients). They are, however, the main result.
- # the next NbCat variables are the "unmet workload" that is the work for which there is no capacity. Ideally, these would all be zero.
- # the next NbCat variables are "max effort over the months for a given category". This is used to evenly distribute the effort.
- # the next NbWT variables are "min capacity required" or "max effort over the months for a given worker type.
- lprec <- make.lp(0, ncol=Nbtot+NbCat+NbCat+NbWT+NbCat)
- set.objfn(lprec, obj=c(rep(0, Nbtot), rep(1000, NbCat), rep(1, NbCat), c(100, 80, 60), rep(500, NbCat)))
- ### constraints 1: no work in certain months for some types of work
- for (categ in names(no_work))
- for (m in intersect(names(month_map), no_work[[categ]])) {
- idx <- dimsToIndex(month=m, categ=categ)
- add.constraint(lprec, xt=rep(1, length(idx)), type="=", rhs=0, indices=idx)
- }
- ### constraints 2: workload must be met
- for (categ in names(categ_map)) {
- add.constraint(
- lprec, xt=rep(1, NbMonth*NbWT+2), "=", rhs=workload[region, categ],
- indices=c(
- dimsToIndex(categ=categ),
- Nbtot+categ_map[categ], # unmet untransferable effort
- Nbtot+NbCat+NbCat+NbWT+categ_map[categ] # unmet transferable effort
- )
- )
- }
- ### constraints 3: effort <= capacity
- for (m in names(month_map)) {
- idx <- which(capacity[,"mon"]==m)
- add.constraint(
- lprec, xt=rep(1, NbCat), type="<=", rhs=capacity[idx, "dcutil"],
- indices=dimsToIndex(month=m, worker_type="data_collector")
- )
- add.constraint(
- lprec, xt=rep(1, NbCat), type="<=", rhs=capacity[idx, "regutil"],
- indices=dimsToIndex(month=m, worker_type="regular")
- )
- add.constraint(
- lprec, xt=rep(1, NbCat), type="<=", rhs=capacity[idx, "nonregutil"],
- indices=dimsToIndex(month=m, worker_type="nonregular")
- )
- }
- ### constraints 4: minimum worker type utilization
- ## for each month, region and category, we have two constraints:
- ## 1) effort_regular >= perc * (effort_dc + effort_nonreg + effort_regular)
- ## 2) effort_dc <= perc * (effort_dc + effort_nonreg + effort_regular)
- ## where perc are input constants given in the min_workertype data.frame
- ## By simple algebra, this normalizes to
- ## 1') -perc * effort_dc - perc * effort_nonreg + (1-perc) * effort_regular >= 0
- ## 2') (1-perc) * effort_dc - perc * effort_nonreg - perc * effort_regular <= 0
- ## the second constraint only applies if there is actually data_collector capacity in that region
- for (m in names(month_map))
- for (categ in names(categ_map)) {
- cap_idx <- which(capacity[,"mon"]==m)
- if(capacity[cap_idx, "regutil"]>0){
- idx1 <- dimsToIndex(month=m, categ=categ, worker_type=c("data_collector", "nonregular"))
- idx2 <- dimsToIndex(month=m, categ=categ, worker_type="regular")
- perc <- min_workertype[categ, "reg_min"]
- add.constraint(lprec, xt=c(rep(-perc, 2), (1-perc)), type=">=", rhs=0, indices=c(idx1, idx2))
- }
- if(capacity[cap_idx, "dcutil"]>0) {
- idx1 <- dimsToIndex(month=m, categ=categ, worker_type=c("regular", "nonregular"))
- idx2 <- dimsToIndex(month=m, categ=categ, worker_type="data_collector")
- perc <- min_workertype[categ, "dc_min"]
- add.constraint(lprec, xt=c(rep(-perc, 2), (1-perc)), type="<=", rhs=0, indices=c(idx1, idx2))
- }
- }
- ### constraints 5: maximum work that can be done offshore
- ## only a certain percentage can be done offshore
- for (m in names(month_map))
- for (categ in names(categ_map))
- add.constraint(lprec, xt=1/max_offshore[categ], "<=", rhs=workload[region, categ], indices=Nbtot+NbCat+NbCat+NbWT+categ_map[categ])
- ### constraints 6: minimum work for some worktypes
- for (categ in names(min_worktype)) {
- rhs <- workload[region, categ] * min_worktype[categ]
- for (m in names(month_map)) add.constraint(lprec, xt=rep(1, NbWT), ">=", rhs=rhs, indices=dimsToIndex(month=m, categ=categ))
- }
- ### helper variable: maximum effort over all months for each category
- for (m in names(month_map))
- for (categ in names(categ_map))
- add.constraint(
- lprec, xt=c(rep(1, NbWT),-1), "<=", rhs=0,
- indices=c(dimsToIndex(month=m, categ=categ), Nbtot+NbCat+categ_map[categ])
- )
- ### helper variable: maximum effort over all months for each worker type
- for (m in names(month_map))
- for (wt in names(worktype_map))
- add.constraint(
- lprec, xt=c(rep(1, NbCat), -1), "<=", rhs=0,
- indices=c(dimsToIndex(month=m, worker_type=wt), Nbtot+NbCat+NbCat+worktype_map[wt])
- )
- # browser()
- ### solve
- status <- solve(lprec)
- ### no solution? halt
- if(status!=0) stop(paste("no solution found, error code ", status, "; region ", region))
- # unmet, non-transferable.
- unmet <- matrix(get.variables(lprec)[seq(Nbtot+1, length.out=NbCat)], nrow=1, dimnames=list(region, names(categ_map)))
- # resulting effort
- effort <- get.variables(lprec)[1:Nbtot]
- ans <- expand.grid(
- Month=names(month_map), Category=names(categ_map),
- Region=region, Worker_Type=names(worktype_map),
- stringsAsFactors=FALSE
- )
- lookup_one <- function(x) effort[dimsToIndex(month=x[["Month"]], categ=x[["Category"]], worker_type=x[["Worker_Type"]])]
- ans[,"Effort"] <- apply(ans, 1, lookup_one)
- # transferable
- transferable <- get.variables(lprec)[seq(Nbtot+NbCat+NbCat+NbWT+1, length.out=NbCat)]
- idx <- which(transferable>.Machine$double.eps^0.5)
- if(length(idx)>0) {
- transferable_df <- data.frame(
- region=region,
- categ=names(categ_map)[idx],
- transferable=transferable[idx],
- stringsAsFactors=FALSE
- )
- } else transferable_df <- data.frame()
- # if( nrow(transferable_df)>0) browser()
- return(list(effort=ans, unmet=unmet, transferable=transferable_df))
- }
- #' internal function used by ds_user_parallel
- #' distributes transferable workload to regions with free capacities
- ds_user_transfer <- function(effort, capacity, transferable, min_workertype, month_map, NbMonth, categ_map, worktype_map, NbWT, NbCat, no_work) {
- # calculate the capacity remaining after onshore work
- eff <- aggregate(Effort ~ Month + Region + Worker_Type, data=effort, sum)
- eff <- reshape(eff, timevar="Worker_Type", idvar=c("Month","Region"), direction="wide")
- eff <- eff[, c("Month", "Region", "Effort.data_collector", "Effort.nonregular", "Effort.regular")]
- colnames(eff) <- c("mon", "region", "dceff", "nonregeff", "regeff")
- remaining_capa <- merge(eff, capacity)
- remaining_capa[, "regremain"] <- pmax(0, remaining_capa[, "regutil"] - remaining_capa[, "regeff"])
- remaining_capa[, "nonregremain"] <- pmax(0, remaining_capa[, "nonregutil"] - remaining_capa[, "nonregeff"])
- remaining_capa[, "dcremain"] <- pmax(0, remaining_capa[, "dcutil"] - remaining_capa[, "dceff"])
- remaining_capa <- remaining_capa[,c("mon", "region", "regremain", "nonregremain", "dcremain")]
- # from where to where can work be shifted?
- from_regions <- unique(transferable[,"region"])
- NbShifts <- nrow(transferable) # region / categ combinations
- idx <- !(remaining_capa[,"region"] %in% from_regions) &
- (remaining_capa[,"regremain"]+remaining_capa[,"nonregremain"]+remaining_capa[,"dcremain"])>0
- to_regions <- unique(remaining_capa[idx, "region"])
- NbRegTo <- length(to_regions)
- # is there at least one region where we can transfer work to?
- if(length(to_regions)==0) {
- unmet_df <- reshape(transferable, direction="wide", timevar="categ", idvar="region")
- rownames(unmet_df) <- unmet_df[,"region"]
- unmet_df[,"region"] <- NULL
- unmet_df <- as.matrix(unmet_df)
- unmet_df[is.na(unmet_df)] <- 0
- colnames(unmet_df) <- substring(colnames(unmet_df), 14)
- return(list(transfers=data.frame(), still_unmet=unmet_df))
- }
- # set up lp
- # first NbShifts*NbRegTo*NbWT*NbMonth entries: effort for the transfers
- # next NbRegTo*NbWT entries: capacity needed after the shifts (this is to minimize)
- # next NbShifts entries: unmet untransferable work (hopefully zero, this is penalized)
- lprec <- make.lp(0, ncol=NbShifts*NbRegTo*NbWT*NbMonth+NbRegTo*NbWT+NbShifts)
- set.objfn(lprec, obj=c(rep(0, NbShifts*NbRegTo*NbWT*NbMonth), rep(c(100, 80, 60), NbRegTo), rep(1000, NbShifts)))
- cat("#Vars: ", NbShifts*NbRegTo*NbWT*NbMonth+NbRegTo*NbWT+NbShifts, "\n")
- ### constraints 1: no work in certain months for some types of work
- for (categ in names(no_work))
- for (m in intersect(names(month_map), no_work[[categ]])) {
- idx_shifts <- which(transferable[,"categ"]==categ)
- for (i in idx_shifts)
- for (reg in seq.int(NbRegTo))
- for (wt in names(worktype_map)) {
- add.constraint(
- lprec,
- xt=1, type="=", rhs=0,
- indices=(i-1)*NbRegTo*NbWT*NbMonth+(reg-1)*NbMonth + (worktype_map[wt]-1)*NbMonth + month_map[m]
- )
- }
- }
- ### constraints 2: workload must be met
- for (i in seq.int(nrow(transferable))) {
- add.constraint(
- lprec, xt=rep(1, NbRegTo*NbWT*NbMonth+1), "=", rhs=transferable[i, "transferable"] ,
- indices=c(seq((i-1)*NbRegTo*NbWT*NbMonth+1, i*NbRegTo*NbWT*NbMonth), NbShifts*NbRegTo*NbWT*NbMonth+NbRegTo*NbWT+i)
- )
- }
- ### constraints 3: transfered effort <= remaining capacity
- for (m in names(month_map))
- for (reg in seq.int(NbRegTo)) {
- idx <- which(remaining_capa[,"mon"]==m & remaining_capa[,"region"]==to_regions[reg])
- add.constraint(
- lprec, xt=rep(1, NbShifts), type="<=", rhs=capacity[idx, "dcutil"],
- indices=(seq.int(NbShifts)-1)*NbRegTo*NbWT*NbMonth+(reg-1)*NbWT*NbMonth+(worktype_map["data_collector"]-1)*NbMonth+month_map[m]
- )
- add.constraint(
- lprec, xt=rep(1, NbShifts), type="<=", rhs=capacity[idx, "regutil"],
- indices=(seq.int(NbShifts)-1)*NbRegTo*NbWT*NbMonth+(reg-1)*NbWT*NbMonth+(worktype_map["regular"]-1)*NbMonth+month_map[m]
- )
- add.constraint(
- lprec, xt=rep(1, NbShifts), type="<=", rhs=capacity[idx, "nonregutil"],
- indices=(seq.int(NbShifts)-1)*NbRegTo*NbWT*NbMonth+(reg-1)*NbWT*NbMonth+(worktype_map["nonregular"]-1)*NbMonth+month_map[m]
- )
- }
- ### constraints 4: minimum worker type utilization
- ## for each month, region and category, we have two constraints:
- ## 1) effort_regular_from_offshore + effort_regular_onsite >= perc * (effort_total_from_offshore + effort_total_onsite)
- ## 2) effort_dc_from_offshore + effort_dc_onsite <= perc * (effort_total_offshore + effort_total_onsite)
- ## where perc are input constants depending on the category given in the min_workertype data.frame
- ## By simple algebra, this normalizes to
- ## 1') (1-perc) effort_regular_offshore >= perc effort_total_onsite - effort_regular_onsite
- ## 2') (1-perc) effort_dc_offshore <= perc effort_total_onsite - effort_dc_onsite
- ## the second constraint only applies if there is actually data_collector capacity in that region
- for (reg in seq.int(NbRegTo))
- for (m in names(month_map))
- for (categ in names(categ_map)) {
- # lookup onsite values
- idx <- which(effort[,"Month"]==m & effort[, "Category"]==categ & effort[, "Region"]==to_regions[reg])
- onsite <- setNames(effort[idx, "Effort"], effort[idx, "Worker_Type"])
- perc <- min_workertype[categ, "reg_min"]
- add.constraint(
- lprec, xt=rep((1-perc), NbShifts), type=">=",
- rhs=perc*sum(onsite)-onsite["regular"],
- indices=(seq.int(NbShifts)-1)*NbRegTo*NbWT*NbMonth+(reg-1)*NbWT*NbMonth+(worktype_map["regular"]-1)*NbMonth+month_map[m]
- )
- perc <- min_workertype[categ, "dc_min"]
- add.constraint(
- lprec, xt=rep((1-perc), NbShifts), type="<=",
- rhs=perc*sum(onsite)-onsite["data_collector"],
- indices=(seq.int(NbShifts)-1)*NbRegTo*NbWT*NbMonth+(reg-1)*NbWT*NbMonth+(worktype_map["data_collector"]-1)*NbMonth+month_map[m]
- )
- }
- ### helper variable: maximum effort over all months for each worker type
- for (reg in seq.int(NbRegTo))
- for (m in names(month_map))
- for (wt in names(worktype_map)) {
- # lookup onsite values
- idx <- which(effort[,"Month"]==m & effort[, "Region"]==to_regions[reg] & effort[, "Worker_Type"]==wt)
- onsite <- sum(effort[idx, "Effort"]) # sum over categories
- add.constraint(
- lprec, xt=c(rep(1, NbShifts), -1), "<=", rhs=-onsite,
- indices=c((seq.int(NbShifts)-1)*NbRegTo*NbWT*NbMonth+(reg-1)*NbWT*NbMonth+(worktype_map[wt]-1)*NbMonth+month_map[m],
- NbShifts*NbRegTo*NbWT*NbMonth+(reg-1)*NbWT+worktype_map[wt])
- )
- }
- ### solve
- status <- solve(lprec)
- ### no solution? halt
- if(status!=0) stop(paste("no solution found, error code ", status))
- ### gather results
- one_transfer <- function(i) {
- vars <- get.variables(lprec)[seq((i-1)*NbRegTo*NbWT*NbMonth+1, i*NbRegTo*NbWT*NbMonth)]
- idx1 <- which(vars > .Machine$double.eps^0.5)
- if(length(idx1)>0) {
- reg <- idx1 %/% (NbWT*NbMonth) + 1
- idx <- idx1 - (reg - 1) * (NbWT*NbMonth)
- wt <- idx %/% NbMonth + 1
- m <- idx - (wt - 1) * NbMonth + 1
- # browser()
- ret <- data.frame(
- region_from=transferable[i, "region"],
- categ=transferable[i,"categ"],
- region_to=to_regions[reg],
- worker_type=names(worktype_map)[wt],
- mon=names(month_map)[m],
- effort=vars[idx1],
- stringsAsFactors=FALSE
- )
- } else ret <- data.frame()
- return(ret)
- }
- transf <- lapply(seq.int(nrow(transferable)), FUN=one_transfer)
- transf <- do.call(rbind, transf)
- ### still unmet workload?
- unmet <- get.variables(lprec)[seq(NbShifts*NbRegTo*NbWT*NbMonth+NbRegTo*NbWT, length.out=NbShifts)]
- if(any(unmet > .Machine$double.eps^0.5)) {
- unmet_df <- transferable
- unmet_df[, "transferable"] <- NULL
- unmet_df[, "unmet"] <- unmet
- unmet_df <- reshape(transferable, direction="wide", timevar="categ", idvar="region")
- rownames(unmet_df) <- unmet_df[,"region"]
- unmet_df[,"region"] <- NULL
- unmet_df <- as.matrix(unmet_df)
- unmet_df[is.na(unmet_df)] <- 0
- colnames(unmet_df) <- substring(colnames(unmet_df), 14)
- } else unmet_df <- data.frame()
- return(list(transfers=transf, still_unmet=unmet_df))
- }
- #' Solves a resource allocation problem
- #'
- #' @param workload workload data.frame (rows=regions, columns=worktype)
- #' @param capacity work capacity per month data.frame (columns: region, month, regutil, nonregutil, dcutil)
- #' @param min_workertype minimum requirements data.frame (columns=region, month, worktype, regmin, dcmin)
- #' @param min_worktype optional minimum requirement for work types.
- #' @param start_month start month: from here to Dec the workload needs to be processed (three letter month abbreviation). Default "Jan"
- #' @param no_work named list of worktype with the months (three letter month abbreviation) where no work on that worktype is possible
- #' @param max_offshore named vector with the percentages of work that can be done offshore
- #'
- #' @return a list with three elements named "effort" with the distributed workload
- #' (data.frame, columns: region, month, worktype, worker type, effort),
- #' "unmet", a (hopefully all zero) matrix (columns: category, rows: regions) where capacity problems arise, and
- #' (only if transfers==TRUE) "transfers" a data.frame with distributed offshore work
- #' (data.frame, columns: region_from, categ, region_to, worker_type, mon, effort)
- ds_user_parallel <- function(
- workload,
- capacity,
- min_workertype,
- min_worktype=c(Subdivisions=1/12, HomeValue=0.05),
- start_month="Jan",
- no_work=list(
- "Reval_Days"=c("Jan", "Feb", "Mar", "Apr", "May", "Jun"),
- "Asset"=c("Sep", "Oct", "Nov", "Dec", "Jan"),
- "Reval_Objections"=c("Jul", "Aug", "Sep", "Oct", "Nov", "Dec")
- ),
- max_offshore=c(
- Building_Consents=0.5, Subdivisions=0.9, S12_Sales=0.5, RM_Objections=0.1, Reval_Days=0.3, Reval_Objections=0.1,
- Asset=0.1, HomeValue=0.2, Rural=0.2, Urgent_New_Imp=0.2
- ),
- transfers=TRUE
- ){
- ### helper functions
- month_map <- setNames(
- rev(seq.int(12)),
- c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec")
- )
- if(!start_month %in% names(month_map)) stop("invalid start_month, must be a three letter month abbreviation.")
- NbMonth <- month_map[start_month]
- month_map <- tail(month_map, NbMonth)
- categ_map <- unique(rownames(min_workertype))
- NbCat <- length(categ_map)
- categ_map <- setNames(seq.int(NbCat), categ_map)
- ### sanity check 1: consistent use of work category names
- if(length(intersect(colnames(workload), names(categ_map)))<max(c(length(colnames(workload)), length(categ_map))))
- stop("work categories in workload and min_req argument do not match.")
- if(length(setdiff(names(no_work), names(categ_map))) > 0)
- stop("work categories in no_work and min_req argument do not match.")
- worktype_map <- c(regular=1, nonregular=2, data_collector=3)
- NbWT <- length(worktype_map)
- Nbtot <- (NbMonth * NbCat * NbWT)
- ### sanity check 2: need more capacity than workload
- capacity <- capacity[capacity[,"mon"] %in% names(month_map),]
- #if(sum(workload)>sum(capacity[, c("regutil", "nonregutil", "dcutil")])) stop("workload exceeds capacity")
- ### map subscripts of the decision vars to index and vice versa
- dimsToIndex <- function(month=names(month_map), categ=names(categ_map), worker_type=names(worktype_map)) {
- args <- expand.grid(
- month=month_map[month]-1,
- categ=categ_map[categ]-1,
- worker_type=worktype_map[worker_type],
- stringsAsFactors=FALSE
- )
- w <- c(NbCat*NbWT, NbWT, 1)
- ret <- apply(args, 1, function(x) {ans <- x %*% w; dim(ans) <- NULL; return(ans)})
- return(ret)
- }
- dimsToIndex <- cmpfun(dimsToIndex)
- subset_wl <- function(reg) matrix(workload[reg,], nrow=1, dimnames=list(reg, colnames(workload)))
- splitted_cap <- split(capacity, capacity[,"region"])
- my_combine <- function(x, y)
- list(
- effort=rbind(x[["effort"]], y[["effort"]]),
- unmet=rbind(x[["unmet"]], y[["unmet"]]),
- transferable=rbind(x[["transferable"]], y[["transferable"]])
- )
- arg <- list(
- month_map=month_map, NbMonth=NbMonth, categ_map=categ_map, worktype_map=worktype_map, min_workertype=min_workertype, min_worktype=min_worktype,
- NbWT=NbWT, Nbtot=Nbtot, NbCat=NbCat, dimsToIndex=dimsToIndex, no_work=no_work, max_offshore=max_offshore
- )
- ret <- foreach(reg=names(splitted_cap), .combine=my_combine) %do% {
- arg[["workload"]] <- subset_wl(reg)
- arg[["capacity"]] <- splitted_cap[[reg]]
- arg[["region"]] <- reg
- do.call(ds_user, arg)
- }
- if(nrow(ret[["transferable"]])>0)
- if(transfers) {
- transf_ret <- ds_user_transfer(
- effort=ret[["effort"]], capacity=capacity, transferable=ret[["transferable"]], min_workertype=min_workertype,
- month_map=month_map, NbMonth=NbMonth, categ_map=categ_map, worktype_map, NbWT=NbWT, NbCat, no_work=no_work
- )
- still_unmet <- transf_ret[["still_unmet"]]
- if(nrow(still_unmet)>0)
- ret[["unmet"]][rownames(still_unmet), colnames(still_unmet)] <-
- ret[["unmet"]][rownames(still_unmet), colnames(still_unmet)] + still_unmet
- ret[["transferable"]] <- NULL
- ret[["transfers"]] <- transf_ret[["transfers"]]
- } else {
- # no transfers wished -- add to unmet
- unmet_df <- reshape(ret[["transferable"]], direction="wide", timevar="categ", idvar="region")
- rownames(unmet_df) <- unmet_df[,"region"]
- unmet_df[,"region"] <- NULL
- unmet_df <- as.matrix(unmet_df)
- unmet_df[is.na(unmet_df)] <- 0
- colnames(unmet_df) <- substring(colnames(unmet_df), 14)
- ret[["unmet"]][rownames(unmet_df), colnames(unmet_df)] <- ret[["unmet"]][rownames(unmet_df), colnames(unmet_df)] + unmet_df
- ret[["transferable"]] <- NULL
- }
- if(any(ret[["unmet"]]>.Machine$double.eps^0.5)) warning("there is unmet ", if(transfers) "untransferable", "workload")
- # browser()
- return(ret)
- }
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement