Advertisement
libdo

Untitled

Nov 1st, 2017
10,880
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
  1. %EM Euler-Maruyama method on linear SDE
  2. %
  3. % SDE is dX = lambda*X dt + mu*X dW, X(0) = Xzero,
  4. % where lambda = 2, mu = 1 and Xzero = 1.
  5. %
  6. % Discretized Brownian path over [0,1] has dt = 2^(-8).
  7. % Euler-Maruyama uses timestep R*dt.
  8. randn(’state’,100)
  9. lambda = 2; mu = 1; Xzero = 1; % problem parameters
  10. T = 1; N = 2^8; dt = 1/N;
  11. dW = sqrt(dt)*randn(1,N); % Brownian increments
  12. W = cumsum(dW); % discretized Brownian path
  13. Xtrue = Xzero*exp((lambda-0.5*mu^2)*([dt:dt:T])+mu*W);
  14. plot([0:dt:T],[Xzero,Xtrue],’m-’), hold on
  15. R = 4; Dt = R*dt; L = N/R; % L EM steps of size Dt = R*dt
  16. Xem = zeros(1,L); % preallocate for efficiency
  17. Xtemp = Xzero;
  18. for j = 1:L
  19. Winc = sum(dW(R*(j-1)+1:R*j));
  20. Xtemp = Xtemp + Dt*lambda*Xtemp + mu*Xtemp*Winc;
  21. Xem(j) = Xtemp;
  22. end
  23. plot([0:Dt:T],[Xzero,Xem],’r--*’), hold off
  24. xlabel(’t’,’FontSize’,12)
  25. ylabel(’X’,’FontSize’,16,’Rotation’,0,’HorizontalAlignment’,’right’)
  26. emerr = abs(Xem(end)-Xtrue(end))
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement