Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- %EM Euler-Maruyama method on linear SDE
- %
- % SDE is dX = lambda*X dt + mu*X dW, X(0) = Xzero,
- % where lambda = 2, mu = 1 and Xzero = 1.
- %
- % Discretized Brownian path over [0,1] has dt = 2^(-8).
- % Euler-Maruyama uses timestep R*dt.
- randn(’state’,100)
- lambda = 2; mu = 1; Xzero = 1; % problem parameters
- T = 1; N = 2^8; dt = 1/N;
- dW = sqrt(dt)*randn(1,N); % Brownian increments
- W = cumsum(dW); % discretized Brownian path
- Xtrue = Xzero*exp((lambda-0.5*mu^2)*([dt:dt:T])+mu*W);
- plot([0:dt:T],[Xzero,Xtrue],’m-’), hold on
- R = 4; Dt = R*dt; L = N/R; % L EM steps of size Dt = R*dt
- Xem = zeros(1,L); % preallocate for efficiency
- Xtemp = Xzero;
- for j = 1:L
- Winc = sum(dW(R*(j-1)+1:R*j));
- Xtemp = Xtemp + Dt*lambda*Xtemp + mu*Xtemp*Winc;
- Xem(j) = Xtemp;
- end
- plot([0:Dt:T],[Xzero,Xem],’r--*’), hold off
- xlabel(’t’,’FontSize’,12)
- ylabel(’X’,’FontSize’,16,’Rotation’,0,’HorizontalAlignment’,’right’)
- emerr = abs(Xem(end)-Xtrue(end))
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement