Advertisement
mirosh111000

Hamster

May 23rd, 2024 (edited)
691
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
Python 4.64 KB | None | 0 0
  1. import pandas as pd
  2. import numpy as np
  3.  
  4. def my_time_d(s):
  5.     d = "0 days"
  6.     h = s // 3600
  7.     time = s % 3600
  8.     m = int(time // 60)
  9.     s = int(time % 60)
  10.     if h >= 24:
  11.         d = int(h // 24)
  12.         h -= d*24
  13.         if d == 1: d = fr'{d} day'
  14.         else: d = fr'{d} days'
  15.     h = int(h)
  16.     if h < 10: h = '0' + str(int(h))
  17.     if m < 10: m = '0' + str(int(m))
  18.     if s < 10: s = '0' + str(int(s))
  19.    
  20.     return fr'{d} {h}:{m}:{s}'
  21.  
  22. def profit_table(df):
  23.    
  24.     info = df.copy()
  25.     info['profit per 100000 coins'] = info['profit per hour'] / info['price'] * 100000
  26.     info['payback period'] = info['price'] / (info['profit per hour'] / 3600)
  27.     for i in range(len(info)):
  28.         info.iloc[i, -1] = my_time_d(info.iloc[i, -1])
  29.    
  30.     return info
  31.  
  32. def invest_in(df, top=10):
  33.    
  34.     print('\nInvest in:')
  35.    
  36.     for i in range(top):
  37.         print(f"\nTOP {i+1}\n{info.index[i]}:\nProfit for 100000 coins per hour: {round(info.iloc[i, -2], 2)}\nUpgrade costs {info.iloc[i,-3]} coins\nPayback period - {info.iloc[i, -1]}")
  38.  
  39. df = pd.DataFrame(columns=['level', 'profit per hour', 'price'])
  40. df.index.names = ['card name']
  41.  
  42. # Markets
  43. df.loc['Fan tokens'] = [12, 2000, 428130]
  44. df.loc['Staking'] = [13, 1350, 282556]
  45. df.loc['BTC pairs'] = [15, 103, 83074]
  46. df.loc['ETH pairs'] = [13, 90, 24219]
  47. df.loc['Top 10 cmc pairs'] = [12, 168, 42813]
  48. df.loc['GameFi tokens'] = [13, 158, 40365]
  49. df.loc['Defi2.0 tokens'] = [13, 158, 40365]
  50. df.loc["SocialFi tokens"] = [12, 105, 21407]
  51. df.loc["Meme coins"] = [11, 216, 47680]
  52. df.loc['Shit coins'] = [13, 1320, 403652]
  53. df.loc["Margin trading x10"] = [12, 579, 107033]
  54. df.loc["Margin trading x20"] = [13, 788, 201826]
  55. df.loc["Margin trading x30"] = [13, 1120, 282556]
  56. df.loc["Margin trading x50"] = [16, 3030, 7253630]
  57. df.loc["Margin trading x75"] = [13, 2470, 605478]
  58. df.loc["Margin trading x100"] = [13, 2190, 403652]
  59. df.loc["Derivatives"] = [13, 1110, 201826]
  60. df.loc["Prediction markets"] = [13, 777, 141278]
  61. df.loc["Web3 generation"] = [14, 1770, 524747]
  62. df.loc["DAO"] = [13, 554, 159841]
  63. df.loc['P2P trading'] = [12, 821, 179815]
  64. df.loc["Trading bots"] = [12, 410, 89907]
  65.  
  66. # PR&Team
  67. df.loc['Support team'] = [12, 147, 32110]
  68. df.loc['HamsterBook'] = [14, 169, 79920]
  69. df.loc['X'] = [13, 180, 44402]
  70. df.loc['Cointelegraph'] = [13, 90, 28256]
  71. df.loc['HamsterTube'] = [13, 203, 48438]
  72. df.loc["HamsterGram"] = [13, 113, 40365]
  73. df.loc["TicTok"] = [14, 241, 119880]
  74. df.loc["Coindesk"] = [12, 168, 42813]
  75. df.loc['Influencers'] = [12, 568, 107033]
  76. df.loc['CEO'] = [13, 225, 80730]
  77. df.loc['IT Team'] = [13, 541, 161461]
  78. df.loc['Marketing'] = [12, 147, 42813]
  79. df.loc["Partnership program"] = [14, 169, 79920]
  80. df.loc['Product team'] = [12, 210, 42813]
  81. df.loc["BisDev team"] = [12, 105, 21407]
  82. df.loc["Two factor authentication"] = [14, 301, 159841]
  83. df.loc["UX and UI team"] = [14, 422, 121479]
  84. df.loc["Security team"] = [14, 482, 159841]
  85. df.loc["QA Team"] = [12, 428, 102931]
  86. df.loc["Antihacking shield"] = [11, 216, 47680]
  87. df.loc["Risk management team"] = [13, 597, 161461]
  88. df.loc["Security Audition"] = [10, 184, 41816]
  89. df.loc["Anonymous transactions ban"] = [14, 774, 299067]
  90. df.loc["Blocking suspicious accounts"] = [13, 360, 100913]
  91.  
  92.  
  93. # Legal
  94. df.loc['KYC'] = [14, 24, 15984]
  95. df.loc['KYB'] = [13, 135, 40365]
  96. df.loc['Legal opinion'] = [11, 118, 23840]
  97. df.loc["SEC trasparancy"] = [11, 118, 28608]
  98. df.loc['Anti money loundering'] = [12, 589, 128439]
  99. df.loc['Licence UAE'] = [12, 1170, 214065]
  100. df.loc['Licence Europe'] = [13, 1620, 403652]
  101. df.loc['Licence Asia'] = [12, 779, 214065]
  102. df.loc['Licence South America'] = [12, 821, 214065]
  103. df.loc['Licence Australia'] = [13, 1530, 403652]
  104. df.loc["Licence North America"] = [12, 2020, 428130]
  105. df.loc['Licence Nigeria'] = [13, 383, 121096]
  106.  
  107. # Specials
  108. df.loc['Top 10 Global Ranking'] = [13, 2700, 807304]
  109. # df.loc['Venom Blockchain'] = [6, 2170, 39799]
  110. df.loc['Special Hamster Conference'] = [13, 2020, 403652]
  111. df.loc['Apps Center Listing'] = [11, 1960, 357599]
  112. df.loc["Bitcoin Pizza Day"] = [12, 210, 42813]
  113. df.loc["There are two chairs"] = [10, 3670, 696935]
  114. df.loc["Short squeeze"] = [11, 1960, 834397]
  115. df.loc["USDT on TON"] = [13, 3040, 807304]
  116. df.loc["21,000,000 CEOs"] = [13, 676, 201826]
  117. df.loc["Add contract with a football club"] = [12, 3680, 1070326]
  118. df.loc["NFT Collection Launch"] = [12, 2520, 727822]
  119. df.loc["Bogdanoff is calling"] = [12, 1000, 214065]
  120. df.loc["Hamster YouTube Chanell"] = [11, 492, 35760]
  121. df.loc["Hamster daily show"] = [10, 368, 27877]
  122. df.loc["Villa for the DEV team"] = [15, 1150, 664594]
  123.  
  124.  
  125.  
  126. info = profit_table(df)
  127. info = info.sort_values(by='profit per 100000 coins')[::-1]
  128.  
  129. invest_in(info, top=5)
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement