Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- As part of your BTP/MTP you need to code the following ML/DL algo using Claude/Chaptgpt for multi-class classification.
- Metrics to be computed
- k fold = 2
- deadline: Sunday 16 Feb
- Some algos you may not get, keep a note of it, and code others.
- Make colab.
- Dataset: https://drive.google.com/file/d/1Hv1y0cSNWSJ80iCaWjl3TP7Vzvl0Rn2a/view?usp=sharing
- Metrics (export to csv). Metrics will be cols. ML algos will be rows
- Classification Metrics
- 1. Accuracy
- 2. Precision
- 3. Recall
- 4. F1 Score
- 5. True Positive Rate (TPR)
- 6. True Negative Rate (TNR)
- 7. False Positive Rate (FPR)
- 8. False Negative Rate (FNR)
- 9. Area Under the Curve (AUC)
- 10. Area Under the Precision-Recall Curve (AUC-PR)
- 11. Balanced Accuracy (BACC)
- 12. Matthews Correlation Coefficient (MCC)
- 13. Kappa Statistic
- 14. Cohen Kappa score
- 15. Positive Predictive Value (PPV)
- 16. Negative Predictive Value (NPV)
- Error Metrics
- 1. Mean Squared Error (MSE)
- 2. Mean Absolute Error (MAE)
- 3. Root Mean Squared Error (RMSE)
- 4. Relative Absolute Error (RAE)
- 5. Log loss
- 6. Cross-Entropy Loss
- 7. Mean absolute error
- 8. Squared Prediction Error
- Time and Efficiency Metrics
- 1. Training Time
- 2. Testing Time
- 3. Detection Time
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement