Advertisement
mayankjoin3

Intern work

Feb 12th, 2025
22
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 1.19 KB | None | 0 0
  1. As part of your BTP/MTP you need to code the following ML/DL algo using Claude/Chaptgpt for multi-class classification.
  2. Metrics to be computed
  3. k fold = 2
  4.  
  5. deadline: Sunday 16 Feb
  6. Some algos you may not get, keep a note of it, and code others.
  7. Make colab.
  8.  
  9. Dataset: https://drive.google.com/file/d/1Hv1y0cSNWSJ80iCaWjl3TP7Vzvl0Rn2a/view?usp=sharing
  10.  
  11. Metrics (export to csv). Metrics will be cols. ML algos will be rows
  12.  
  13. Classification Metrics
  14. 1. Accuracy
  15. 2. Precision
  16. 3. Recall
  17. 4. F1 Score
  18. 5. True Positive Rate (TPR)
  19. 6. True Negative Rate (TNR)
  20. 7. False Positive Rate (FPR)
  21. 8. False Negative Rate (FNR)
  22. 9. Area Under the Curve (AUC)
  23. 10. Area Under the Precision-Recall Curve (AUC-PR)
  24. 11. Balanced Accuracy (BACC)
  25. 12. Matthews Correlation Coefficient (MCC)
  26. 13. Kappa Statistic
  27. 14. Cohen Kappa score
  28. 15. Positive Predictive Value (PPV)
  29. 16. Negative Predictive Value (NPV)
  30.  
  31. Error Metrics
  32. 1. Mean Squared Error (MSE)
  33. 2. Mean Absolute Error (MAE)
  34. 3. Root Mean Squared Error (RMSE)
  35. 4. Relative Absolute Error (RAE)
  36. 5. Log loss
  37. 6. Cross-Entropy Loss
  38. 7. Mean absolute error
  39. 8. Squared Prediction Error
  40.  
  41. Time and Efficiency Metrics
  42. 1. Training Time
  43. 2. Testing Time
  44. 3. Detection Time
  45.  
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement