Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- my_data = [['slashdot', 'USA', 'yes', 18, 'None'],
- ['google', 'France', 'yes', 23, 'Premium'],
- ['digg', 'USA', 'yes', 24, 'Basic'],
- ['kiwitobes', 'France', 'yes', 23, 'Basic'],
- ['google', 'UK', 'no', 21, 'Premium'],
- ['(direct)', 'New Zealand', 'no', 12, 'None'],
- ['(direct)', 'UK', 'no', 21, 'Basic'],
- ['google', 'USA', 'no', 24, 'Premium'],
- ['slashdot', 'France', 'yes', 19, 'None'],
- ['digg', 'USA', 'no', 18, 'None'],
- ['google', 'UK', 'no', 18, 'None'],
- ['kiwitobes', 'UK', 'no', 19, 'None'],
- ['digg', 'New Zealand', 'yes', 12, 'Basic'],
- ['slashdot', 'UK', 'no', 21, 'None'],
- ['google', 'UK', 'yes', 18, 'Basic'],
- ['kiwitobes', 'France', 'yes', 19, 'Basic']]
- test_cases = [['google', 'MK', 'no', 24, 'Unknown'],
- ['google', 'MK', 'no', 15, 'Unknown'],
- ['digg', 'UK', 'yes', 21, 'Unknown'],
- ['digg', 'UK', 'no', 25, 'Unknown']]
- # my_data=[line.split('\t') for line in file('decision_tree_example.txt')]
- class decisionnode:
- def __init__(self, col=-1, value=None, results=None, tb=None, fb=None):
- self.col = col
- self.value = value
- self.results = results
- self.tb = tb
- self.fb = fb
- def sporedi_broj(row, column, value):
- return row[column] >= value
- def sporedi_string(row, column, value):
- return row[column] == value
- # Divides a set on a specific column. Can handle numeric
- # or nominal values
- def divideset(rows, column, value):
- # Make a function that tells us if a row is in
- # the first group (true) or the second group (false)
- split_function = None
- if isinstance(value, int) or isinstance(value, float): # ako vrednosta so koja sporeduvame e od tip int ili float
- # split_function=lambda row:row[column]>=value # togas vrati funkcija cij argument e row i vrakja vrednost true ili false
- split_function = sporedi_broj
- else:
- # split_function=lambda row:row[column]==value # ako vrednosta so koja sporeduvame e od drug tip (string)
- split_function = sporedi_string
- # Divide the rows into two sets and return them
- # set1=[row for row in rows if split_function(row)] # za sekoj row od rows za koj split_function vrakja true
- # set2=[row for row in rows if not split_function(row)] # za sekoj row od rows za koj split_function vrakja false
- set1 = [row for row in rows if
- split_function(row, column, value)] # za sekoj row od rows za koj split_function vrakja true
- set2 = [row for row in rows if
- not split_function(row, column, value)] # za sekoj row od rows za koj split_function vrakja false
- return (set1, set2)
- # Create counts of possible results (the last column of
- # each row is the result)
- def uniquecounts(rows):
- results = {}
- for row in rows:
- # The result is the last column
- r = row[len(row) - 1]
- if r not in results: results[r] = 0
- results[r] += 1
- return results
- # Probability that a randomly placed item will
- # be in the wrong category
- def giniimpurity(rows):
- total = len(rows)
- counts = uniquecounts(rows)
- imp = 0
- for k1 in counts:
- p1 = float(counts[k1]) / total
- for k2 in counts:
- if k1 == k2: continue
- p2 = float(counts[k2]) / total
- imp += p1 * p2
- return imp
- # Entropy is the sum of p(x)log(p(x)) across all
- # the different possible results
- def entropy(rows):
- from math import log
- log2 = lambda x: log(x) / log(2)
- results = uniquecounts(rows)
- # Now calculate the entropy
- ent = 0.0
- for r in results.keys():
- p = float(results[r]) / len(rows)
- ent = ent - p * log2(p)
- return ent
- def buildtree(rows, scoref=entropy):
- if len(rows) == 0: return decisionnode()
- current_score = scoref(rows)
- # Set up some variables to track the best criteria
- best_gain = 0.0
- best_criteria = None
- best_sets = None
- column_count = len(rows[0]) - 1
- for col in range(0, column_count):
- # Generate the list of different values in
- # this column
- column_values = {}
- for row in rows:
- column_values[row[col]] = 1
- # print
- # Now try dividing the rows up for each value
- # in this column
- for value in column_values.keys():
- (set1, set2) = divideset(rows, col, value)
- # Information gain
- p = float(len(set1)) / len(rows)
- gain = current_score - p * scoref(set1) - (1 - p) * scoref(set2)
- if gain > best_gain and len(set1) > 0 and len(set2) > 0:
- best_gain = gain
- best_criteria = (col, value)
- best_sets = (set1, set2)
- # Create the subbranches
- if best_gain > 0:
- trueBranch = buildtree(best_sets[0])
- falseBranch = buildtree(best_sets[1])
- return decisionnode(col=best_criteria[0], value=best_criteria[1],
- tb=trueBranch, fb=falseBranch)
- else:
- return decisionnode(results=uniquecounts(rows))
- def printtree(tree, indent=''):
- # Is this a leaf node?
- if tree.results != None:
- print(str(tree.results))
- else:
- # Print the criteria
- print(str(tree.col) + ':' + str(tree.value) + '? ')
- # Print the branches
- print(indent + 'T->'),
- printtree(tree.tb, indent + ' ')
- print(indent + 'F->'),
- printtree(tree.fb, indent + ' ')
- def classify(observation, tree):
- if tree.results != None:
- return tree.results
- else:
- vrednost = observation[tree.col]
- branch = None
- if isinstance(vrednost, int) or isinstance(vrednost, float):
- if vrednost >= tree.value:
- branch = tree.tb
- else:
- branch = tree.fb
- else:
- if vrednost == tree.value:
- branch = tree.tb
- else:
- branch = tree.fb
- return classify(observation, branch)
- trainingData = [
- [6.3, 2.9, 5.6, 1.8, 'I. virginica'],
- [6.5, 3.0, 5.8, 2.2, 'I. virginica'],
- [7.6, 3.0, 6.6, 2.1, 'I. virginica'],
- [4.9, 2.5, 4.5, 1.7, 'I. virginica'],
- [7.3, 2.9, 6.3, 1.8, 'I. virginica'],
- [6.7, 2.5, 5.8, 1.8, 'I. virginica'],
- [7.2, 3.6, 6.1, 2.5, 'I. virginica'],
- [6.5, 3.2, 5.1, 2.0, 'I. virginica'],
- [6.4, 2.7, 5.3, 1.9, 'I. virginica'],
- [6.8, 3.0, 5.5, 2.1, 'I. virginica'],
- [5.7, 2.5, 5.0, 2.0, 'I. virginica'],
- [5.8, 2.8, 5.1, 2.4, 'I. virginica'],
- [6.4, 3.2, 5.3, 2.3, 'I. virginica'],
- [6.5, 3.0, 5.5, 1.8, 'I. virginica'],
- [7.7, 3.8, 6.7, 2.2, 'I. virginica'],
- [7.7, 2.6, 6.9, 2.3, 'I. virginica'],
- [6.0, 2.2, 5.0, 1.5, 'I. virginica'],
- [6.9, 3.2, 5.7, 2.3, 'I. virginica'],
- [5.6, 2.8, 4.9, 2.0, 'I. virginica'],
- [7.7, 2.8, 6.7, 2.0, 'I. virginica'],
- [6.3, 2.7, 4.9, 1.8, 'I. virginica'],
- [6.7, 3.3, 5.7, 2.1, 'I. virginica'],
- [7.2, 3.2, 6.0, 1.8, 'I. virginica'],
- [6.2, 2.8, 4.8, 1.8, 'I. virginica'],
- [6.1, 3.0, 4.9, 1.8, 'I. virginica'],
- [6.4, 2.8, 5.6, 2.1, 'I. virginica'],
- [7.2, 3.0, 5.8, 1.6, 'I. virginica'],
- [7.4, 2.8, 6.1, 1.9, 'I. virginica'],
- [7.9, 3.8, 6.4, 2.0, 'I. virginica'],
- [6.4, 2.8, 5.6, 2.2, 'I. virginica'],
- [6.3, 2.8, 5.1, 1.5, 'I. virginica'],
- [6.1, 2.6, 5.6, 1.4, 'I. virginica'],
- [7.7, 3.0, 6.1, 2.3, 'I. virginica'],
- [6.3, 3.4, 5.6, 2.4, 'I. virginica'],
- [5.1, 3.5, 1.4, 0.2, 'I. setosa'],
- [4.9, 3.0, 1.4, 0.2, 'I. setosa'],
- [4.7, 3.2, 1.3, 0.2, 'I. setosa'],
- [4.6, 3.1, 1.5, 0.2, 'I. setosa'],
- [5.0, 3.6, 1.4, 0.2, 'I. setosa'],
- [5.4, 3.9, 1.7, 0.4, 'I. setosa'],
- [4.6, 3.4, 1.4, 0.3, 'I. setosa'],
- [5.0, 3.4, 1.5, 0.2, 'I. setosa'],
- [4.4, 2.9, 1.4, 0.2, 'I. setosa'],
- [4.9, 3.1, 1.5, 0.1, 'I. setosa'],
- [5.4, 3.7, 1.5, 0.2, 'I. setosa'],
- [4.8, 3.4, 1.6, 0.2, 'I. setosa'],
- [4.8, 3.0, 1.4, 0.1, 'I. setosa'],
- [4.3, 3.0, 1.1, 0.1, 'I. setosa'],
- [5.8, 4.0, 1.2, 0.2, 'I. setosa'],
- [5.7, 4.4, 1.5, 0.4, 'I. setosa'],
- [5.4, 3.9, 1.3, 0.4, 'I. setosa'],
- [5.1, 3.5, 1.4, 0.3, 'I. setosa'],
- [5.7, 3.8, 1.7, 0.3, 'I. setosa'],
- [5.1, 3.8, 1.5, 0.3, 'I. setosa'],
- [5.4, 3.4, 1.7, 0.2, 'I. setosa'],
- [5.1, 3.7, 1.5, 0.4, 'I. setosa'],
- [4.6, 3.6, 1.0, 0.2, 'I. setosa'],
- [5.1, 3.3, 1.7, 0.5, 'I. setosa'],
- [4.8, 3.4, 1.9, 0.2, 'I. setosa'],
- [5.0, 3.0, 1.6, 0.2, 'I. setosa'],
- [5.0, 3.4, 1.6, 0.4, 'I. setosa'],
- [5.2, 3.5, 1.5, 0.2, 'I. setosa'],
- [5.2, 3.4, 1.4, 0.2, 'I. setosa'],
- [5.5, 2.3, 4.0, 1.3, 'I. versicolor'],
- [6.5, 2.8, 4.6, 1.5, 'I. versicolor'],
- [5.7, 2.8, 4.5, 1.3, 'I. versicolor'],
- [6.3, 3.3, 4.7, 1.6, 'I. versicolor'],
- [4.9, 2.4, 3.3, 1.0, 'I. versicolor'],
- [6.6, 2.9, 4.6, 1.3, 'I. versicolor'],
- [5.2, 2.7, 3.9, 1.4, 'I. versicolor'],
- [5.0, 2.0, 3.5, 1.0, 'I. versicolor'],
- [5.9, 3.0, 4.2, 1.5, 'I. versicolor'],
- [6.0, 2.2, 4.0, 1.0, 'I. versicolor'],
- [6.1, 2.9, 4.7, 1.4, 'I. versicolor'],
- [5.6, 2.9, 3.6, 1.3, 'I. versicolor'],
- [6.7, 3.1, 4.4, 1.4, 'I. versicolor'],
- [5.6, 3.0, 4.5, 1.5, 'I. versicolor'],
- [5.8, 2.7, 4.1, 1.0, 'I. versicolor'],
- [6.2, 2.2, 4.5, 1.5, 'I. versicolor'],
- [5.6, 2.5, 3.9, 1.1, 'I. versicolor'],
- [5.9, 3.2, 4.8, 1.8, 'I. versicolor'],
- [6.1, 2.8, 4.0, 1.3, 'I. versicolor'],
- [6.3, 2.5, 4.9, 1.5, 'I. versicolor'],
- [6.1, 2.8, 4.7, 1.2, 'I. versicolor'],
- [6.4, 2.9, 4.3, 1.3, 'I. versicolor'],
- [6.6, 3.0, 4.4, 1.4, 'I. versicolor'],
- [6.8, 2.8, 4.8, 1.4, 'I. versicolor'],
- [6.7, 3.0, 5.0, 1.7, 'I. versicolor'],
- [6.0, 2.9, 4.5, 1.5, 'I. versicolor'],
- [5.7, 2.6, 3.5, 1.0, 'I. versicolor'],
- [5.5, 2.4, 3.8, 1.1, 'I. versicolor'],
- [5.5, 2.4, 3.7, 1.0, 'I. versicolor'],
- [5.8, 2.7, 3.9, 1.2, 'I. versicolor'],
- [6.0, 2.7, 5.1, 1.6, 'I. versicolor'],
- [5.4, 3.0, 4.5, 1.5, 'I. versicolor'],
- [6.0, 3.4, 4.5, 1.6, 'I. versicolor'],
- [6.7, 3.1, 4.7, 1.5, 'I. versicolor'],
- [6.3, 2.3, 4.4, 1.3, 'I. versicolor'],
- [5.6, 3.0, 4.1, 1.3, 'I. versicolor'],
- [5.5, 2.5, 4.0, 1.3, 'I. versicolor'],
- [5.5, 2.6, 4.4, 1.2, 'I. versicolor'],
- [6.1, 3.0, 4.6, 1.4, 'I. versicolor'],
- [5.8, 2.6, 4.0, 1.2, 'I. versicolor'],
- [5.0, 2.3, 3.3, 1.0, 'I. versicolor'],
- [5.6, 2.7, 4.2, 1.3, 'I. versicolor'],
- [5.7, 3.0, 4.2, 1.2, 'I. versicolor'],
- [5.7, 2.9, 4.2, 1.3, 'I. versicolor'],
- [6.2, 2.9, 4.3, 1.3, 'I. versicolor'],
- [5.1, 2.5, 3.0, 1.1, 'I. versicolor'],
- [5.7, 2.8, 4.1, 1.3, 'I. versicolor'],
- [6.4, 3.1, 5.5, 1.8, 'I. virginica'],
- [6.0, 3.0, 4.8, 1.8, 'I. virginica'],
- [6.9, 3.1, 5.4, 2.1, 'I. virginica'],
- [6.7, 3.1, 5.6, 2.4, 'I. virginica'],
- [6.9, 3.1, 5.1, 2.3, 'I. virginica'],
- [5.8, 2.7, 5.1, 1.9, 'I. virginica'],
- [6.8, 3.2, 5.9, 2.3, 'I. virginica'],
- [6.7, 3.3, 5.7, 2.5, 'I. virginica'],
- [6.7, 3.0, 5.2, 2.3, 'I. virginica'],
- [6.3, 2.5, 5.0, 1.9, 'I. virginica'],
- [6.5, 3.0, 5.2, 2.0, 'I. virginica'],
- [6.2, 3.4, 5.4, 2.3, 'I. virginica'],
- [4.7, 3.2, 1.6, 0.2, 'I. setosa'],
- [4.8, 3.1, 1.6, 0.2, 'I. setosa'],
- [5.4, 3.4, 1.5, 0.4, 'I. setosa'],
- [5.2, 4.1, 1.5, 0.1, 'I. setosa'],
- [5.5, 4.2, 1.4, 0.2, 'I. setosa'],
- [4.9, 3.1, 1.5, 0.2, 'I. setosa'],
- [5.0, 3.2, 1.2, 0.2, 'I. setosa'],
- [5.5, 3.5, 1.3, 0.2, 'I. setosa'],
- [4.9, 3.6, 1.4, 0.1, 'I. setosa'],
- [4.4, 3.0, 1.3, 0.2, 'I. setosa'],
- [5.1, 3.4, 1.5, 0.2, 'I. setosa'],
- [5.0, 3.5, 1.3, 0.3, 'I. setosa'],
- [4.5, 2.3, 1.3, 0.3, 'I. setosa'],
- [4.4, 3.2, 1.3, 0.2, 'I. setosa'],
- [5.0, 3.5, 1.6, 0.6, 'I. setosa'],
- [5.1, 3.8, 1.9, 0.4, 'I. setosa'],
- [4.8, 3.0, 1.4, 0.3, 'I. setosa'],
- [5.1, 3.8, 1.6, 0.2, 'I. setosa'],
- [5.9, 3.0, 5.1, 1.8, 'I. virginica']
- ]
- def first(trainingData):
- return trainingData[:int(len(trainingData)/2)]
- def second(trainingData):
- return trainingData[int(len(trainingData)/2):]
- if __name__ == "__main__":
- att1 = input()
- att2 = input()
- att3 = input()
- att4 = input()
- planttype = input()
- testCase = [att1, att2, att3, att4, planttype]
- t1 = first(trainingData)
- t2 = second(trainingData)
- tree1 = buildtree(t1)
- tree2 = buildtree(t2)
- c1 = classify(testCase, tree1)
- c2 = classify(testCase, tree2)
- if c1.keys() != c2.keys():
- print("KONTRADIKCIJA")
- else:
- for key,value in c1.items():
- print key
Add Comment
Please, Sign In to add comment