Advertisement
Radeen10-_

Untitled

Aug 5th, 2023
984
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
Python 1.78 KB | None | 0 0
  1. metrics_df = pd.read_json(
  2.         "/kaggle/working/metrics (6).json", orient="records", lines=True)
  3. mdf = metrics_df.sort_values("iteration")
  4. print(mdf.tail(10).T)
  5.  
  6. # Plot loss
  7. fig, ax = plt.subplots()
  8.  
  9. mdf1 = mdf[~mdf["total_loss"].isna()]
  10. ax.plot(mdf1["iteration"], mdf1["total_loss"], c="C0", label="train")
  11.  
  12. if "validation_loss" in mdf.columns:
  13.     mdf2 = mdf[~mdf["validation_loss"].isna()]
  14.     ax.plot(mdf2["iteration"], mdf2["validation_loss"],
  15.             c="C1", label="validation")
  16.  
  17. ax.legend()
  18. ax.set_title("Loss curve")
  19. plt.show()
  20.  
  21. # Plot Accuracy stage 0 fastrcnn
  22. fig, ax = plt.subplots()
  23.  
  24. mdf1 = mdf[~mdf["mask_rcnn/accuracy"].isna()]
  25. ax.plot(mdf1["iteration"], mdf1["mask_rcnn/accuracy"],
  26.         c="C0", label="train")
  27.  
  28. ax.legend()
  29. ax.set_title("MASKRCNN Accuracy curve")
  30.  
  31. plt.show()
  32.  
  33. # Plot Accuracy maskrcnn
  34.  
  35. fig, ax = plt.subplots()
  36.  
  37. mdf1 = mdf[~mdf["stage0/fast_rcnn/cls_accuracy"].isna()]
  38. ax.plot(mdf1["iteration"], mdf1["stage0/fast_rcnn/cls_accuracy"],
  39.         c="C0", label="train")
  40.  
  41. ax.legend()
  42. ax.set_title("FASTRCNN CLS Accuracy curve")
  43. plt.show()
  44.  
  45.  
  46.  
  47. # Plot Bounding Box regressor loss
  48. fig, ax = plt.subplots()
  49.  
  50. mdf1 = mdf[~mdf["loss_box_reg_stage0"].isna()]
  51. ax.plot(mdf1["iteration"], mdf1["loss_box_reg_stage0"], c="C0", label="train")
  52.  
  53. ax.legend()
  54. ax.set_title("loss_box_reg")
  55. plt.show()
  56.  
  57.  
  58.  
  59.  
  60. # Plot loss cls stage0
  61. fig, ax = plt.subplots()
  62.  
  63. mdf1 = mdf[~mdf["loss_cls_stage0"].isna()]
  64. ax.plot(mdf1["iteration"], mdf1["loss_cls_stage0"], c="C0", label="train")
  65.  
  66. ax.legend()
  67. ax.set_title("loss_cls_stage0 ")
  68. plt.show()
  69.  
  70.  
  71. # Plot loss mask
  72. fig, ax = plt.subplots()
  73.  
  74. mdf1 = mdf[~mdf["loss_mask"].isna()]
  75. ax.plot(mdf1["iteration"], mdf1["loss_mask"], c="C0", label="train")
  76.  
  77. ax.legend()
  78. ax.set_title("loss mask")
  79. plt.show()
  80.  
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement