Advertisement
saleks28

MAGK3

Jan 17th, 2020
408
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
Python 5.75 KB | None | 0 0
  1.  
  2.  
  3. def GenerateCurve(k, z):
  4.     #p + N + T
  5.     p = 4 * z ** 2 + 1
  6.     r1 = 4 * z ** 2 - 2 * z + 1
  7.     r2 = 4 * z ** 2 + 2 * z + 1
  8.     if r1 in Primes():
  9.         r = r1
  10.         T = 1 + 2 * z
  11.     elif r2 in Primes():
  12.         r = r2
  13.         T = 1 - 2 * z
  14.     #discr + j-inv
  15.     D = 4 * p - T ** 2
  16.     polynomHilb = hilbert_class_polynomial(-D)
  17.     K = GF(p)
  18.     j_invariants = polynomHilb.roots(K, multiplicities = False)
  19.     j = j_invariants[0]
  20.     #coefs
  21.     A = K(3 * j / (1728 - j))
  22.     B = K(2 * j / (1728 - j))
  23.     #EC
  24.     E = EllipticCurve(K, [A, B])
  25.     if E.order() != r:
  26.         return 0, 0, 0, 0, 0
  27.     KK.<t> = GF(p**k)
  28.     Ek = EllipticCurve(KK, [A, B])
  29.     if gcd(Ek.order(), r**2) == 1:
  30.         return 0, 0, 0, 0, 0
  31.     return E, Ek, T, r, j
  32.  
  33. def CreatePoint(E, ord, flag):
  34.     if flag == 0:
  35.         point = E.random_point()
  36.         while 1:
  37.             if point.order() == ord:
  38.                 return point
  39.             point = E.random_point()
  40.     elif flag == 6:
  41.         point = E.random_point()
  42.         while 1:
  43.             if point.order() == ord:
  44.                 return point
  45.             else:
  46.                 point *= E.order() // ord ** 2
  47.                 if point.order() == ord:
  48.                     return point
  49.             point = E.random_point()
  50.  
  51. def CreateTorsionGroup(P1, P2, r):
  52.     tors = list()
  53.     for i in range(1, 3):
  54.         j = list()
  55.         for k in range(1, r):
  56.             j.append(i * P1 + k * P2)
  57.         tors.append(j)
  58.     return tors
  59.  
  60. def Tate(EK, tors, k, r):
  61.     R = tors[0][0]
  62.     S = tors[0][1]
  63.     T = tors[0][2]
  64.     print("R = {}".format(R))
  65.     print("S = {}".format(S))
  66.     print("T = {}\n".format(T))
  67.     RS = R + S
  68.     RST1 = RS.tate_pairing(T, r, k)
  69.     RT = R.tate_pairing(T, r, k)
  70.     ST = S.tate_pairing(T, r, k)
  71.     RST2 = RT * ST
  72.     print("e(R + S, T) = {}".format(RST1))
  73.     print("e(R,T) * e(S, T) = {}".format(RST2))
  74.     if RST1 == RST2:
  75.         print("Bilinear\n")
  76.     P0 = EK([0, 1, 0])
  77.     RP = R.tate_pairing(P0, r, k)
  78.     PR = P0.tate_pairing(R, r, k)
  79.     print("RP: {}".format(PR))
  80.     print("PR: {}".format(RP))
  81.     if RP == 1 and PR == 1:
  82.         print("Non-degeneracy\n")
  83.     Z = T.tate_pairing(T, r, k)
  84.     print("Value: {}".format(Z))
  85.     if Z == 1:
  86.         print("Alternating")
  87.    
  88. def Weil(EK, tors, r):
  89.     R = tors[0][1]
  90.     S = tors[0][2]
  91.     T = tors[0][3]
  92.     print("R = {}".format(R))
  93.     print("S = {}".format(S))
  94.     print("T = {}\n".format(T))
  95.     RS = R + S
  96.     RST1 = RS.weil_pairing(T, r)
  97.     RT = R.weil_pairing(T, r)
  98.     ST = S.weil_pairing(T, r)
  99.     RST2 = RT * ST
  100.     print("e(R+S, T) = {}".format(RST1))
  101.     print("e(R, T) * e(S, T) = {}".format(RST2))
  102.     if RST1 == RST2:
  103.         print("Bilinear\n")
  104.     P0 = EK([0, 1, 0])
  105.     RP = R.weil_pairing(P0, r)
  106.     PR = P0.weil_pairing(R, r)
  107.     print("RP: {}".format(PR))
  108.     print("PR: {}".format(RP))
  109.     if RP == 1 and PR == 1:
  110.         print("Non-degeneracy")
  111.     Z = T.weil_pairing(T, r)
  112.     print("Value: {}".format(Z))
  113.     if Z == 1:
  114.         print("Alternating")
  115.    
  116. def Hash(message, i):
  117.     s = 0
  118.     for m in message:
  119.         s = s + ord(m)
  120.     return s % i
  121.    
  122. def func(mes, EK):
  123.     p = int(EK.base_field().characteristic())
  124.     A = int(EK.a4())
  125.     B = int(EK.a6())
  126.     for i in range(2, p):
  127.         h = Hash(mes, i)
  128.         t = kronecker_symbol(h**3 + A*h + B, p)
  129.         if t == 1:
  130.             var('y')
  131.             x = h
  132.             E = x**3 + A*x + B == y**2
  133.             y_res = E.roots(ring = GF(p), multiplicities = False)
  134.             yr = y_res[randint(0, p) % len(y_res)]
  135.             try:
  136.                 P = EK([h, yr])
  137.                 return P
  138.             except:
  139.                 continue
  140.     P0 = EK([0,1,0])
  141.     return P0
  142.        
  143.    
  144. def CreateSign(mes, E, tors, r):
  145.     print("Create signature for message: {}".format(mes))
  146.     res = list()
  147.     M = func(mes, E)
  148.     a = randint(1, r - 1)
  149.     res.append(a * M)
  150.     P = tors[0][0]
  151.     res.append(a * P)
  152.     res.append(P)
  153.     print("Signature = {}".format(res[0][0]))
  154.     print("Key = {}".format(res[1]))
  155.     return res
  156.  
  157.  
  158. def CheckSS(mes, E, r, x, P, T):
  159.     print("Check signature for message: {}".format(mes))
  160.     p = E.base_field().characteristic()
  161.     A = E.a4()
  162.     B = E.a6()
  163.     try:
  164.         y = GF(p)(x ** 3 + A * x + B)
  165.         y = GF(p)(sqrt(y))
  166.         S = E([x, y, 1])
  167.     except:
  168.         y = GF(p)(x ** 3 + A * x + B)
  169.         y = GF(p)(sqrt(y))
  170.         y = GF(p)(-y)
  171.         S = E([x, y, 1])
  172.     M = func(mes, E)
  173.     P1 = P.weil_pairing(S, r)
  174.     P2 = T.weil_pairing(M, r)
  175.     if P1 == P2 or P1 == P2^(-1):
  176.         print("Right signature")
  177.     else:
  178.         print("Message was changed")
  179.  
  180. def main():
  181.     k = 6
  182.     z = 10
  183.     E, Ek, T, r, j = GenerateCurve(k, z)
  184.     print("z: {}" . format(z))
  185.     print("E: {}" . format(E))
  186.     print("Ek: {}" . format(Ek))
  187.     print("T: {}" . format(T))
  188.     print("r: {}" . format(r))
  189.     print("j: {}" . format(j))
  190.    
  191.     #Points for torsion group
  192.     P1 = CreatePoint(E, r, 0)
  193.     P2 = CreatePoint(Ek, r, 6)
  194.     print("P1: {}" . format(P1))
  195.     print("P2: {}\n" . format(P2))
  196.  
  197.     P1 = Ek(list([P1[0], P1[1], P1[2]]))
  198.     F.<t> = GF(Ek.base_field().characteristic()).extension(k)
  199.     F = Ek.base_field()
  200.     P2x = F(P2[0])
  201.     P2y = F(P2[1])
  202.     P2z = F(P2[2])
  203.     P2 = Ek(list([P2x, P2y, P2z]))
  204.  
  205.     TorsGroup = CreateTorsionGroup(P1, Ek(P2), r)
  206.     #print("Tors: {}\n" . format(TorsGroup))
  207.     print("Tate pairing:")
  208.     Tate(Ek, TorsGroup, k, r)
  209.     print("Weil pairing:")
  210.     Weil(Ek, TorsGroup, r)
  211.     print("Short signature:")
  212.     message = "Hello there"
  213.     SSResult = CreateSign(message, Ek, TorsGroup, r)
  214.     mess = "He"
  215.     CheckSS(mess, Ek, r, SSResult[0][0], SSResult[2], SSResult[1])
  216. #main
  217. main()
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement