Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- accelerate launch train_dreambooth.py --pretrained_model_name_or_path=$MODEL_NAME --instance_data_dir=$INSTANCE_DIR --class_data_dir=$CLASS_DIR --output_dir=$OUTPUT_DIR --train_text_encoder --with_prior_preservation --prior_loss_weight=1.0 --num_dataloader_workers=1 --instance_prompt="a photo of lyra dog" --class_prompt="a photo of dog" --resolution=512 --train_batch_size=1 --lr_scheduler="constant" --lr_warmup_steps=0 --num_class_images=200 --use_lora --lora_r 16 --lora_alpha 27 --lora_text_encoder_r 16 --lora_text_encoder_alpha 17 --learning_rate=1e-4 --gradient_accumulation_steps=1 --gradient_checkpointing --max_train_steps=800
- /mnt/ssd1/home/kjetil/dev/lora_dreambooth/venv/lib/python3.11/site-packages/torch/cuda/__init__.py:611: UserWarning: Can't initialize NVML
- warnings.warn("Can't initialize NVML")
- /mnt/ssd1/home/kjetil/dev/lora_dreambooth/venv/lib/python3.11/site-packages/torch/cuda/__init__.py:611: UserWarning: Can't initialize NVML
- warnings.warn("Can't initialize NVML")
- /mnt/ssd1/home/kjetil/dev/lora_dreambooth/venv/lib/python3.11/site-packages/accelerate/accelerator.py:384: UserWarning: `log_with=tensorboard` was passed but no supported trackers are currently installed.
- warnings.warn(f"`log_with={log_with}` was passed but no supported trackers are currently installed.")
- 12/22/2023 02:48:01 - INFO - __main__ - Distributed environment: DistributedType.NO
- Num processes: 1
- Process index: 0
- Local process index: 0
- Device: cpu
- Mixed precision type: no
- diffusion_pytorch_model.safetensors: 100%|██████████████████████████████████████████████████████████████████████████████| 3.44G/3.44G [10:36<00:00, 5.40MB/s]
- Fetching 14 files: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████| 14/14 [10:36<00:00, 45.49s/it]
- {'image_encoder', 'requires_safety_checker'} was not found in config. Values will be initialized to default values.
- Loading pipeline components...: 0%| | 0/6 [00:00<?, ?it/s]{'dual_cross_attention', 'time_cond_proj_dim', 'class_embed_type', 'time_embedding_type', 'addition_embed_type_num_heads', 'attention_type', 'dropout', 'mid_block_type', 'reverse_transformer_layers_per_block', 'timestep_post_act', 'mid_block_only_cross_attention', 'conv_out_kernel', 'encoder_hid_dim', 'addition_time_embed_dim', 'class_embeddings_concat', 'cross_attention_norm', 'resnet_out_scale_factor', 'encoder_hid_dim_type', 'addition_embed_type', 'time_embedding_dim', 'num_attention_heads', 'only_cross_attention', 'resnet_skip_time_act', 'num_class_embeds', 'use_linear_projection', 'projection_class_embeddings_input_dim', 'conv_in_kernel', 'transformer_layers_per_block', 'resnet_time_scale_shift', 'upcast_attention', 'time_embedding_act_fn'} was not found in config. Values will be initialized to default values.
- Loaded unet as UNet2DConditionModel from `unet` subfolder of CompVis/stable-diffusion-v1-4.
- Loading pipeline components...: 17%|███████████████ | 1/6 [00:00<00:01, 4.98it/s]{'force_upcast', 'norm_num_groups'} was not found in config. Values will be initialized to default values.
- Loaded vae as AutoencoderKL from `vae` subfolder of CompVis/stable-diffusion-v1-4.
- Loading pipeline components...: 33%|██████████████████████████████ | 2/6 [00:01<00:03, 1.19it/s]Loaded feature_extractor as CLIPImageProcessor from `feature_extractor` subfolder of CompVis/stable-diffusion-v1-4.
- Loaded tokenizer as CLIPTokenizer from `tokenizer` subfolder of CompVis/stable-diffusion-v1-4.
- Loading pipeline components...: 67%|████████████████████████████████████████████████████████████ | 4/6 [00:01<00:00, 2.79it/s]Loaded text_encoder as CLIPTextModel from `text_encoder` subfolder of CompVis/stable-diffusion-v1-4.
- Loading pipeline components...: 83%|███████████████████████████████████████████████████████████████████████████ | 5/6 [00:02<00:00, 1.76it/s]{'prediction_type', 'timestep_spacing'} was not found in config. Values will be initialized to default values.
- Loaded scheduler as PNDMScheduler from `scheduler` subfolder of CompVis/stable-diffusion-v1-4.
- Loading pipeline components...: 100%|██████████████████████████████████████████████████████████████████████████████████████████| 6/6 [00:02<00:00, 2.24it/s]
- You have disabled the safety checker for <class 'diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline'> by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .
- 12/22/2023 02:58:42 - INFO - __main__ - Number of class images to sample: 200.
- Generating class images: 100%|██████████████████████████████████████████████████████████████████████████████████████████| 50/50 [51:10:16<00:00, 3684.34s/it]
- You are using a model of type clip_text_model to instantiate a model of type . This is not supported for all configurations of models and can yield errors.
- {'force_upcast', 'norm_num_groups'} was not found in config. Values will be initialized to default values.
- {'dual_cross_attention', 'time_cond_proj_dim', 'class_embed_type', 'time_embedding_type', 'addition_embed_type_num_heads', 'attention_type', 'dropout', 'mid_block_type', 'reverse_transformer_layers_per_block', 'timestep_post_act', 'mid_block_only_cross_attention', 'conv_out_kernel', 'encoder_hid_dim', 'addition_time_embed_dim', 'class_embeddings_concat', 'cross_attention_norm', 'resnet_out_scale_factor', 'encoder_hid_dim_type', 'addition_embed_type', 'time_embedding_dim', 'num_attention_heads', 'only_cross_attention', 'resnet_skip_time_act', 'num_class_embeds', 'use_linear_projection', 'projection_class_embeddings_input_dim', 'conv_in_kernel', 'transformer_layers_per_block', 'resnet_time_scale_shift', 'upcast_attention', 'time_embedding_act_fn'} was not found in config. Values will be initialized to default values.
- trainable params: 1,594,368 || all params: 861,115,332 || trainable%: 0.18515150535027286
- PeftModel(
- (base_model): LoraModel(
- (model): UNet2DConditionModel(
- (conv_in): Conv2d(4, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- (time_proj): Timesteps()
- (time_embedding): TimestepEmbedding(
- (linear_1): Linear(in_features=320, out_features=1280, bias=True)
- (act): SiLU()
- (linear_2): Linear(in_features=1280, out_features=1280, bias=True)
- )
- (down_blocks): ModuleList(
- (0): CrossAttnDownBlock2D(
- (attentions): ModuleList(
- (0-1): 2 x Transformer2DModel(
- (norm): GroupNorm(32, 320, eps=1e-06, affine=True)
- (proj_in): Conv2d(320, 320, kernel_size=(1, 1), stride=(1, 1))
- (transformer_blocks): ModuleList(
- (0): BasicTransformerBlock(
- (norm1): LayerNorm((320,), eps=1e-05, elementwise_affine=True)
- (attn1): Attention(
- (to_q): lora.Linear(
- (base_layer): Linear(in_features=320, out_features=320, bias=False)
- (lora_dropout): ModuleDict(
- (default): Identity()
- )
- (lora_A): ModuleDict(
- (default): Linear(in_features=320, out_features=16, bias=False)
- )
- (lora_B): ModuleDict(
- (default): Linear(in_features=16, out_features=320, bias=False)
- )
- (lora_embedding_A): ParameterDict()
- (lora_embedding_B): ParameterDict()
- )
- (to_k): Linear(in_features=320, out_features=320, bias=False)
- (to_v): lora.Linear(
- (base_layer): Linear(in_features=320, out_features=320, bias=False)
- (lora_dropout): ModuleDict(
- (default): Identity()
- )
- (lora_A): ModuleDict(
- (default): Linear(in_features=320, out_features=16, bias=False)
- )
- (lora_B): ModuleDict(
- (default): Linear(in_features=16, out_features=320, bias=False)
- )
- (lora_embedding_A): ParameterDict()
- (lora_embedding_B): ParameterDict()
- )
- (to_out): ModuleList(
- (0): Linear(in_features=320, out_features=320, bias=True)
- (1): Dropout(p=0.0, inplace=False)
- )
- )
- (norm2): LayerNorm((320,), eps=1e-05, elementwise_affine=True)
- (attn2): Attention(
- (to_q): lora.Linear(
- (base_layer): Linear(in_features=320, out_features=320, bias=False)
- (lora_dropout): ModuleDict(
- (default): Identity()
- )
- (lora_A): ModuleDict(
- (default): Linear(in_features=320, out_features=16, bias=False)
- )
- (lora_B): ModuleDict(
- (default): Linear(in_features=16, out_features=320, bias=False)
- )
- (lora_embedding_A): ParameterDict()
- (lora_embedding_B): ParameterDict()
- )
- (to_k): Linear(in_features=768, out_features=320, bias=False)
- (to_v): lora.Linear(
- (base_layer): Linear(in_features=768, out_features=320, bias=False)
- (lora_dropout): ModuleDict(
- (default): Identity()
- )
- (lora_A): ModuleDict(
- (default): Linear(in_features=768, out_features=16, bias=False)
- )
- (lora_B): ModuleDict(
- (default): Linear(in_features=16, out_features=320, bias=False)
- )
- (lora_embedding_A): ParameterDict()
- (lora_embedding_B): ParameterDict()
- )
- (to_out): ModuleList(
- (0): Linear(in_features=320, out_features=320, bias=True)
- (1): Dropout(p=0.0, inplace=False)
- )
- )
- (norm3): LayerNorm((320,), eps=1e-05, elementwise_affine=True)
- (ff): FeedForward(
- (net): ModuleList(
- (0): GEGLU(
- (proj): Linear(in_features=320, out_features=2560, bias=True)
- )
- (1): Dropout(p=0.0, inplace=False)
- (2): Linear(in_features=1280, out_features=320, bias=True)
- )
- )
- )
- )
- (proj_out): Conv2d(320, 320, kernel_size=(1, 1), stride=(1, 1))
- )
- )
- (resnets): ModuleList(
- (0-1): 2 x ResnetBlock2D(
- (norm1): GroupNorm(32, 320, eps=1e-05, affine=True)
- (conv1): Conv2d(320, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- (time_emb_proj): Linear(in_features=1280, out_features=320, bias=True)
- (norm2): GroupNorm(32, 320, eps=1e-05, affine=True)
- (dropout): Dropout(p=0.0, inplace=False)
- (conv2): Conv2d(320, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- (nonlinearity): SiLU()
- )
- )
- (downsamplers): ModuleList(
- (0): Downsample2D(
- (conv): Conv2d(320, 320, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
- )
- )
- )
- (1): CrossAttnDownBlock2D(
- (attentions): ModuleList(
- (0-1): 2 x Transformer2DModel(
- (norm): GroupNorm(32, 640, eps=1e-06, affine=True)
- (proj_in): Conv2d(640, 640, kernel_size=(1, 1), stride=(1, 1))
- (transformer_blocks): ModuleList(
- (0): BasicTransformerBlock(
- (norm1): LayerNorm((640,), eps=1e-05, elementwise_affine=True)
- (attn1): Attention(
- (to_q): lora.Linear(
- (base_layer): Linear(in_features=640, out_features=640, bias=False)
- (lora_dropout): ModuleDict(
- (default): Identity()
- )
- (lora_A): ModuleDict(
- (default): Linear(in_features=640, out_features=16, bias=False)
- )
- (lora_B): ModuleDict(
- (default): Linear(in_features=16, out_features=640, bias=False)
- )
- (lora_embedding_A): ParameterDict()
- (lora_embedding_B): ParameterDict()
- )
- (to_k): Linear(in_features=640, out_features=640, bias=False)
- (to_v): lora.Linear(
- (base_layer): Linear(in_features=640, out_features=640, bias=False)
- (lora_dropout): ModuleDict(
- (default): Identity()
- )
- (lora_A): ModuleDict(
- (default): Linear(in_features=640, out_features=16, bias=False)
- )
- (lora_B): ModuleDict(
- (default): Linear(in_features=16, out_features=640, bias=False)
- )
- (lora_embedding_A): ParameterDict()
- (lora_embedding_B): ParameterDict()
- )
- (to_out): ModuleList(
- (0): Linear(in_features=640, out_features=640, bias=True)
- (1): Dropout(p=0.0, inplace=False)
- )
- )
- (norm2): LayerNorm((640,), eps=1e-05, elementwise_affine=True)
- (attn2): Attention(
- (to_q): lora.Linear(
- (base_layer): Linear(in_features=640, out_features=640, bias=False)
- (lora_dropout): ModuleDict(
- (default): Identity()
- )
- (lora_A): ModuleDict(
- (default): Linear(in_features=640, out_features=16, bias=False)
- )
- (lora_B): ModuleDict(
- (default): Linear(in_features=16, out_features=640, bias=False)
- )
- (lora_embedding_A): ParameterDict()
- (lora_embedding_B): ParameterDict()
- )
- (to_k): Linear(in_features=768, out_features=640, bias=False)
- (to_v): lora.Linear(
- (base_layer): Linear(in_features=768, out_features=640, bias=False)
- (lora_dropout): ModuleDict(
- (default): Identity()
- )
- (lora_A): ModuleDict(
- (default): Linear(in_features=768, out_features=16, bias=False)
- )
- (lora_B): ModuleDict(
- (default): Linear(in_features=16, out_features=640, bias=False)
- )
- (lora_embedding_A): ParameterDict()
- (lora_embedding_B): ParameterDict()
- )
- (to_out): ModuleList(
- (0): Linear(in_features=640, out_features=640, bias=True)
- (1): Dropout(p=0.0, inplace=False)
- )
- )
- (norm3): LayerNorm((640,), eps=1e-05, elementwise_affine=True)
- (ff): FeedForward(
- (net): ModuleList(
- (0): GEGLU(
- (proj): Linear(in_features=640, out_features=5120, bias=True)
- )
- (1): Dropout(p=0.0, inplace=False)
- (2): Linear(in_features=2560, out_features=640, bias=True)
- )
- )
- )
- )
- (proj_out): Conv2d(640, 640, kernel_size=(1, 1), stride=(1, 1))
- )
- )
- (resnets): ModuleList(
- (0): ResnetBlock2D(
- (norm1): GroupNorm(32, 320, eps=1e-05, affine=True)
- (conv1): Conv2d(320, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- (time_emb_proj): Linear(in_features=1280, out_features=640, bias=True)
- (norm2): GroupNorm(32, 640, eps=1e-05, affine=True)
- (dropout): Dropout(p=0.0, inplace=False)
- (conv2): Conv2d(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- (nonlinearity): SiLU()
- (conv_shortcut): Conv2d(320, 640, kernel_size=(1, 1), stride=(1, 1))
- )
- (1): ResnetBlock2D(
- (norm1): GroupNorm(32, 640, eps=1e-05, affine=True)
- (conv1): Conv2d(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- (time_emb_proj): Linear(in_features=1280, out_features=640, bias=True)
- (norm2): GroupNorm(32, 640, eps=1e-05, affine=True)
- (dropout): Dropout(p=0.0, inplace=False)
- (conv2): Conv2d(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- (nonlinearity): SiLU()
- )
- )
- (downsamplers): ModuleList(
- (0): Downsample2D(
- (conv): Conv2d(640, 640, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
- )
- )
- )
- (2): CrossAttnDownBlock2D(
- (attentions): ModuleList(
- (0-1): 2 x Transformer2DModel(
- (norm): GroupNorm(32, 1280, eps=1e-06, affine=True)
- (proj_in): Conv2d(1280, 1280, kernel_size=(1, 1), stride=(1, 1))
- (transformer_blocks): ModuleList(
- (0): BasicTransformerBlock(
- (norm1): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
- (attn1): Attention(
- (to_q): lora.Linear(
- (base_layer): Linear(in_features=1280, out_features=1280, bias=False)
- (lora_dropout): ModuleDict(
- (default): Identity()
- )
- (lora_A): ModuleDict(
- (default): Linear(in_features=1280, out_features=16, bias=False)
- )
- (lora_B): ModuleDict(
- (default): Linear(in_features=16, out_features=1280, bias=False)
- )
- (lora_embedding_A): ParameterDict()
- (lora_embedding_B): ParameterDict()
- )
- (to_k): Linear(in_features=1280, out_features=1280, bias=False)
- (to_v): lora.Linear(
- (base_layer): Linear(in_features=1280, out_features=1280, bias=False)
- (lora_dropout): ModuleDict(
- (default): Identity()
- )
- (lora_A): ModuleDict(
- (default): Linear(in_features=1280, out_features=16, bias=False)
- )
- (lora_B): ModuleDict(
- (default): Linear(in_features=16, out_features=1280, bias=False)
- )
- (lora_embedding_A): ParameterDict()
- (lora_embedding_B): ParameterDict()
- )
- (to_out): ModuleList(
- (0): Linear(in_features=1280, out_features=1280, bias=True)
- (1): Dropout(p=0.0, inplace=False)
- )
- )
- (norm2): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
- (attn2): Attention(
- (to_q): lora.Linear(
- (base_layer): Linear(in_features=1280, out_features=1280, bias=False)
- (lora_dropout): ModuleDict(
- (default): Identity()
- )
- (lora_A): ModuleDict(
- (default): Linear(in_features=1280, out_features=16, bias=False)
- )
- (lora_B): ModuleDict(
- (default): Linear(in_features=16, out_features=1280, bias=False)
- )
- (lora_embedding_A): ParameterDict()
- (lora_embedding_B): ParameterDict()
- )
- (to_k): Linear(in_features=768, out_features=1280, bias=False)
- (to_v): lora.Linear(
- (base_layer): Linear(in_features=768, out_features=1280, bias=False)
- (lora_dropout): ModuleDict(
- (default): Identity()
- )
- (lora_A): ModuleDict(
- (default): Linear(in_features=768, out_features=16, bias=False)
- )
- (lora_B): ModuleDict(
- (default): Linear(in_features=16, out_features=1280, bias=False)
- )
- (lora_embedding_A): ParameterDict()
- (lora_embedding_B): ParameterDict()
- )
- (to_out): ModuleList(
- (0): Linear(in_features=1280, out_features=1280, bias=True)
- (1): Dropout(p=0.0, inplace=False)
- )
- )
- (norm3): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
- (ff): FeedForward(
- (net): ModuleList(
- (0): GEGLU(
- (proj): Linear(in_features=1280, out_features=10240, bias=True)
- )
- (1): Dropout(p=0.0, inplace=False)
- (2): Linear(in_features=5120, out_features=1280, bias=True)
- )
- )
- )
- )
- (proj_out): Conv2d(1280, 1280, kernel_size=(1, 1), stride=(1, 1))
- )
- )
- (resnets): ModuleList(
- (0): ResnetBlock2D(
- (norm1): GroupNorm(32, 640, eps=1e-05, affine=True)
- (conv1): Conv2d(640, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- (time_emb_proj): Linear(in_features=1280, out_features=1280, bias=True)
- (norm2): GroupNorm(32, 1280, eps=1e-05, affine=True)
- (dropout): Dropout(p=0.0, inplace=False)
- (conv2): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- (nonlinearity): SiLU()
- (conv_shortcut): Conv2d(640, 1280, kernel_size=(1, 1), stride=(1, 1))
- )
- (1): ResnetBlock2D(
- (norm1): GroupNorm(32, 1280, eps=1e-05, affine=True)
- (conv1): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- (time_emb_proj): Linear(in_features=1280, out_features=1280, bias=True)
- (norm2): GroupNorm(32, 1280, eps=1e-05, affine=True)
- (dropout): Dropout(p=0.0, inplace=False)
- (conv2): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- (nonlinearity): SiLU()
- )
- )
- (downsamplers): ModuleList(
- (0): Downsample2D(
- (conv): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
- )
- )
- )
- (3): DownBlock2D(
- (resnets): ModuleList(
- (0-1): 2 x ResnetBlock2D(
- (norm1): GroupNorm(32, 1280, eps=1e-05, affine=True)
- (conv1): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- (time_emb_proj): Linear(in_features=1280, out_features=1280, bias=True)
- (norm2): GroupNorm(32, 1280, eps=1e-05, affine=True)
- (dropout): Dropout(p=0.0, inplace=False)
- (conv2): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- (nonlinearity): SiLU()
- )
- )
- )
- )
- (up_blocks): ModuleList(
- (0): UpBlock2D(
- (resnets): ModuleList(
- (0-2): 3 x ResnetBlock2D(
- (norm1): GroupNorm(32, 2560, eps=1e-05, affine=True)
- (conv1): Conv2d(2560, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- (time_emb_proj): Linear(in_features=1280, out_features=1280, bias=True)
- (norm2): GroupNorm(32, 1280, eps=1e-05, affine=True)
- (dropout): Dropout(p=0.0, inplace=False)
- (conv2): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- (nonlinearity): SiLU()
- (conv_shortcut): Conv2d(2560, 1280, kernel_size=(1, 1), stride=(1, 1))
- )
- )
- (upsamplers): ModuleList(
- (0): Upsample2D(
- (conv): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- )
- )
- )
- (1): CrossAttnUpBlock2D(
- (attentions): ModuleList(
- (0-2): 3 x Transformer2DModel(
- (norm): GroupNorm(32, 1280, eps=1e-06, affine=True)
- (proj_in): Conv2d(1280, 1280, kernel_size=(1, 1), stride=(1, 1))
- (transformer_blocks): ModuleList(
- (0): BasicTransformerBlock(
- (norm1): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
- (attn1): Attention(
- (to_q): lora.Linear(
- (base_layer): Linear(in_features=1280, out_features=1280, bias=False)
- (lora_dropout): ModuleDict(
- (default): Identity()
- )
- (lora_A): ModuleDict(
- (default): Linear(in_features=1280, out_features=16, bias=False)
- )
- (lora_B): ModuleDict(
- (default): Linear(in_features=16, out_features=1280, bias=False)
- )
- (lora_embedding_A): ParameterDict()
- (lora_embedding_B): ParameterDict()
- )
- (to_k): Linear(in_features=1280, out_features=1280, bias=False)
- (to_v): lora.Linear(
- (base_layer): Linear(in_features=1280, out_features=1280, bias=False)
- (lora_dropout): ModuleDict(
- (default): Identity()
- )
- (lora_A): ModuleDict(
- (default): Linear(in_features=1280, out_features=16, bias=False)
- )
- (lora_B): ModuleDict(
- (default): Linear(in_features=16, out_features=1280, bias=False)
- )
- (lora_embedding_A): ParameterDict()
- (lora_embedding_B): ParameterDict()
- )
- (to_out): ModuleList(
- (0): Linear(in_features=1280, out_features=1280, bias=True)
- (1): Dropout(p=0.0, inplace=False)
- )
- )
- (norm2): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
- (attn2): Attention(
- (to_q): lora.Linear(
- (base_layer): Linear(in_features=1280, out_features=1280, bias=False)
- (lora_dropout): ModuleDict(
- (default): Identity()
- )
- (lora_A): ModuleDict(
- (default): Linear(in_features=1280, out_features=16, bias=False)
- )
- (lora_B): ModuleDict(
- (default): Linear(in_features=16, out_features=1280, bias=False)
- )
- (lora_embedding_A): ParameterDict()
- (lora_embedding_B): ParameterDict()
- )
- (to_k): Linear(in_features=768, out_features=1280, bias=False)
- (to_v): lora.Linear(
- (base_layer): Linear(in_features=768, out_features=1280, bias=False)
- (lora_dropout): ModuleDict(
- (default): Identity()
- )
- (lora_A): ModuleDict(
- (default): Linear(in_features=768, out_features=16, bias=False)
- )
- (lora_B): ModuleDict(
- (default): Linear(in_features=16, out_features=1280, bias=False)
- )
- (lora_embedding_A): ParameterDict()
- (lora_embedding_B): ParameterDict()
- )
- (to_out): ModuleList(
- (0): Linear(in_features=1280, out_features=1280, bias=True)
- (1): Dropout(p=0.0, inplace=False)
- )
- )
- (norm3): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
- (ff): FeedForward(
- (net): ModuleList(
- (0): GEGLU(
- (proj): Linear(in_features=1280, out_features=10240, bias=True)
- )
- (1): Dropout(p=0.0, inplace=False)
- (2): Linear(in_features=5120, out_features=1280, bias=True)
- )
- )
- )
- )
- (proj_out): Conv2d(1280, 1280, kernel_size=(1, 1), stride=(1, 1))
- )
- )
- (resnets): ModuleList(
- (0-1): 2 x ResnetBlock2D(
- (norm1): GroupNorm(32, 2560, eps=1e-05, affine=True)
- (conv1): Conv2d(2560, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- (time_emb_proj): Linear(in_features=1280, out_features=1280, bias=True)
- (norm2): GroupNorm(32, 1280, eps=1e-05, affine=True)
- (dropout): Dropout(p=0.0, inplace=False)
- (conv2): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- (nonlinearity): SiLU()
- (conv_shortcut): Conv2d(2560, 1280, kernel_size=(1, 1), stride=(1, 1))
- )
- (2): ResnetBlock2D(
- (norm1): GroupNorm(32, 1920, eps=1e-05, affine=True)
- (conv1): Conv2d(1920, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- (time_emb_proj): Linear(in_features=1280, out_features=1280, bias=True)
- (norm2): GroupNorm(32, 1280, eps=1e-05, affine=True)
- (dropout): Dropout(p=0.0, inplace=False)
- (conv2): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- (nonlinearity): SiLU()
- (conv_shortcut): Conv2d(1920, 1280, kernel_size=(1, 1), stride=(1, 1))
- )
- )
- (upsamplers): ModuleList(
- (0): Upsample2D(
- (conv): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- )
- )
- )
- (2): CrossAttnUpBlock2D(
- (attentions): ModuleList(
- (0-2): 3 x Transformer2DModel(
- (norm): GroupNorm(32, 640, eps=1e-06, affine=True)
- (proj_in): Conv2d(640, 640, kernel_size=(1, 1), stride=(1, 1))
- (transformer_blocks): ModuleList(
- (0): BasicTransformerBlock(
- (norm1): LayerNorm((640,), eps=1e-05, elementwise_affine=True)
- (attn1): Attention(
- (to_q): lora.Linear(
- (base_layer): Linear(in_features=640, out_features=640, bias=False)
- (lora_dropout): ModuleDict(
- (default): Identity()
- )
- (lora_A): ModuleDict(
- (default): Linear(in_features=640, out_features=16, bias=False)
- )
- (lora_B): ModuleDict(
- (default): Linear(in_features=16, out_features=640, bias=False)
- )
- (lora_embedding_A): ParameterDict()
- (lora_embedding_B): ParameterDict()
- )
- (to_k): Linear(in_features=640, out_features=640, bias=False)
- (to_v): lora.Linear(
- (base_layer): Linear(in_features=640, out_features=640, bias=False)
- (lora_dropout): ModuleDict(
- (default): Identity()
- )
- (lora_A): ModuleDict(
- (default): Linear(in_features=640, out_features=16, bias=False)
- )
- (lora_B): ModuleDict(
- (default): Linear(in_features=16, out_features=640, bias=False)
- )
- (lora_embedding_A): ParameterDict()
- (lora_embedding_B): ParameterDict()
- )
- (to_out): ModuleList(
- (0): Linear(in_features=640, out_features=640, bias=True)
- (1): Dropout(p=0.0, inplace=False)
- )
- )
- (norm2): LayerNorm((640,), eps=1e-05, elementwise_affine=True)
- (attn2): Attention(
- (to_q): lora.Linear(
- (base_layer): Linear(in_features=640, out_features=640, bias=False)
- (lora_dropout): ModuleDict(
- (default): Identity()
- )
- (lora_A): ModuleDict(
- (default): Linear(in_features=640, out_features=16, bias=False)
- )
- (lora_B): ModuleDict(
- (default): Linear(in_features=16, out_features=640, bias=False)
- )
- (lora_embedding_A): ParameterDict()
- (lora_embedding_B): ParameterDict()
- )
- (to_k): Linear(in_features=768, out_features=640, bias=False)
- (to_v): lora.Linear(
- (base_layer): Linear(in_features=768, out_features=640, bias=False)
- (lora_dropout): ModuleDict(
- (default): Identity()
- )
- (lora_A): ModuleDict(
- (default): Linear(in_features=768, out_features=16, bias=False)
- )
- (lora_B): ModuleDict(
- (default): Linear(in_features=16, out_features=640, bias=False)
- )
- (lora_embedding_A): ParameterDict()
- (lora_embedding_B): ParameterDict()
- )
- (to_out): ModuleList(
- (0): Linear(in_features=640, out_features=640, bias=True)
- (1): Dropout(p=0.0, inplace=False)
- )
- )
- (norm3): LayerNorm((640,), eps=1e-05, elementwise_affine=True)
- (ff): FeedForward(
- (net): ModuleList(
- (0): GEGLU(
- (proj): Linear(in_features=640, out_features=5120, bias=True)
- )
- (1): Dropout(p=0.0, inplace=False)
- (2): Linear(in_features=2560, out_features=640, bias=True)
- )
- )
- )
- )
- (proj_out): Conv2d(640, 640, kernel_size=(1, 1), stride=(1, 1))
- )
- )
- (resnets): ModuleList(
- (0): ResnetBlock2D(
- (norm1): GroupNorm(32, 1920, eps=1e-05, affine=True)
- (conv1): Conv2d(1920, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- (time_emb_proj): Linear(in_features=1280, out_features=640, bias=True)
- (norm2): GroupNorm(32, 640, eps=1e-05, affine=True)
- (dropout): Dropout(p=0.0, inplace=False)
- (conv2): Conv2d(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- (nonlinearity): SiLU()
- (conv_shortcut): Conv2d(1920, 640, kernel_size=(1, 1), stride=(1, 1))
- )
- (1): ResnetBlock2D(
- (norm1): GroupNorm(32, 1280, eps=1e-05, affine=True)
- (conv1): Conv2d(1280, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- (time_emb_proj): Linear(in_features=1280, out_features=640, bias=True)
- (norm2): GroupNorm(32, 640, eps=1e-05, affine=True)
- (dropout): Dropout(p=0.0, inplace=False)
- (conv2): Conv2d(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- (nonlinearity): SiLU()
- (conv_shortcut): Conv2d(1280, 640, kernel_size=(1, 1), stride=(1, 1))
- )
- (2): ResnetBlock2D(
- (norm1): GroupNorm(32, 960, eps=1e-05, affine=True)
- (conv1): Conv2d(960, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- (time_emb_proj): Linear(in_features=1280, out_features=640, bias=True)
- (norm2): GroupNorm(32, 640, eps=1e-05, affine=True)
- (dropout): Dropout(p=0.0, inplace=False)
- (conv2): Conv2d(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- (nonlinearity): SiLU()
- (conv_shortcut): Conv2d(960, 640, kernel_size=(1, 1), stride=(1, 1))
- )
- )
- (upsamplers): ModuleList(
- (0): Upsample2D(
- (conv): Conv2d(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- )
- )
- )
- (3): CrossAttnUpBlock2D(
- (attentions): ModuleList(
- (0-2): 3 x Transformer2DModel(
- (norm): GroupNorm(32, 320, eps=1e-06, affine=True)
- (proj_in): Conv2d(320, 320, kernel_size=(1, 1), stride=(1, 1))
- (transformer_blocks): ModuleList(
- (0): BasicTransformerBlock(
- (norm1): LayerNorm((320,), eps=1e-05, elementwise_affine=True)
- (attn1): Attention(
- (to_q): lora.Linear(
- (base_layer): Linear(in_features=320, out_features=320, bias=False)
- (lora_dropout): ModuleDict(
- (default): Identity()
- )
- (lora_A): ModuleDict(
- (default): Linear(in_features=320, out_features=16, bias=False)
- )
- (lora_B): ModuleDict(
- (default): Linear(in_features=16, out_features=320, bias=False)
- )
- (lora_embedding_A): ParameterDict()
- (lora_embedding_B): ParameterDict()
- )
- (to_k): Linear(in_features=320, out_features=320, bias=False)
- (to_v): lora.Linear(
- (base_layer): Linear(in_features=320, out_features=320, bias=False)
- (lora_dropout): ModuleDict(
- (default): Identity()
- )
- (lora_A): ModuleDict(
- (default): Linear(in_features=320, out_features=16, bias=False)
- )
- (lora_B): ModuleDict(
- (default): Linear(in_features=16, out_features=320, bias=False)
- )
- (lora_embedding_A): ParameterDict()
- (lora_embedding_B): ParameterDict()
- )
- (to_out): ModuleList(
- (0): Linear(in_features=320, out_features=320, bias=True)
- (1): Dropout(p=0.0, inplace=False)
- )
- )
- (norm2): LayerNorm((320,), eps=1e-05, elementwise_affine=True)
- (attn2): Attention(
- (to_q): lora.Linear(
- (base_layer): Linear(in_features=320, out_features=320, bias=False)
- (lora_dropout): ModuleDict(
- (default): Identity()
- )
- (lora_A): ModuleDict(
- (default): Linear(in_features=320, out_features=16, bias=False)
- )
- (lora_B): ModuleDict(
- (default): Linear(in_features=16, out_features=320, bias=False)
- )
- (lora_embedding_A): ParameterDict()
- (lora_embedding_B): ParameterDict()
- )
- (to_k): Linear(in_features=768, out_features=320, bias=False)
- (to_v): lora.Linear(
- (base_layer): Linear(in_features=768, out_features=320, bias=False)
- (lora_dropout): ModuleDict(
- (default): Identity()
- )
- (lora_A): ModuleDict(
- (default): Linear(in_features=768, out_features=16, bias=False)
- )
- (lora_B): ModuleDict(
- (default): Linear(in_features=16, out_features=320, bias=False)
- )
- (lora_embedding_A): ParameterDict()
- (lora_embedding_B): ParameterDict()
- )
- (to_out): ModuleList(
- (0): Linear(in_features=320, out_features=320, bias=True)
- (1): Dropout(p=0.0, inplace=False)
- )
- )
- (norm3): LayerNorm((320,), eps=1e-05, elementwise_affine=True)
- (ff): FeedForward(
- (net): ModuleList(
- (0): GEGLU(
- (proj): Linear(in_features=320, out_features=2560, bias=True)
- )
- (1): Dropout(p=0.0, inplace=False)
- (2): Linear(in_features=1280, out_features=320, bias=True)
- )
- )
- )
- )
- (proj_out): Conv2d(320, 320, kernel_size=(1, 1), stride=(1, 1))
- )
- )
- (resnets): ModuleList(
- (0): ResnetBlock2D(
- (norm1): GroupNorm(32, 960, eps=1e-05, affine=True)
- (conv1): Conv2d(960, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- (time_emb_proj): Linear(in_features=1280, out_features=320, bias=True)
- (norm2): GroupNorm(32, 320, eps=1e-05, affine=True)
- (dropout): Dropout(p=0.0, inplace=False)
- (conv2): Conv2d(320, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- (nonlinearity): SiLU()
- (conv_shortcut): Conv2d(960, 320, kernel_size=(1, 1), stride=(1, 1))
- )
- (1-2): 2 x ResnetBlock2D(
- (norm1): GroupNorm(32, 640, eps=1e-05, affine=True)
- (conv1): Conv2d(640, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- (time_emb_proj): Linear(in_features=1280, out_features=320, bias=True)
- (norm2): GroupNorm(32, 320, eps=1e-05, affine=True)
- (dropout): Dropout(p=0.0, inplace=False)
- (conv2): Conv2d(320, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- (nonlinearity): SiLU()
- (conv_shortcut): Conv2d(640, 320, kernel_size=(1, 1), stride=(1, 1))
- )
- )
- )
- )
- (mid_block): UNetMidBlock2DCrossAttn(
- (attentions): ModuleList(
- (0): Transformer2DModel(
- (norm): GroupNorm(32, 1280, eps=1e-06, affine=True)
- (proj_in): Conv2d(1280, 1280, kernel_size=(1, 1), stride=(1, 1))
- (transformer_blocks): ModuleList(
- (0): BasicTransformerBlock(
- (norm1): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
- (attn1): Attention(
- (to_q): lora.Linear(
- (base_layer): Linear(in_features=1280, out_features=1280, bias=False)
- (lora_dropout): ModuleDict(
- (default): Identity()
- )
- (lora_A): ModuleDict(
- (default): Linear(in_features=1280, out_features=16, bias=False)
- )
- (lora_B): ModuleDict(
- (default): Linear(in_features=16, out_features=1280, bias=False)
- )
- (lora_embedding_A): ParameterDict()
- (lora_embedding_B): ParameterDict()
- )
- (to_k): Linear(in_features=1280, out_features=1280, bias=False)
- (to_v): lora.Linear(
- (base_layer): Linear(in_features=1280, out_features=1280, bias=False)
- (lora_dropout): ModuleDict(
- (default): Identity()
- )
- (lora_A): ModuleDict(
- (default): Linear(in_features=1280, out_features=16, bias=False)
- )
- (lora_B): ModuleDict(
- (default): Linear(in_features=16, out_features=1280, bias=False)
- )
- (lora_embedding_A): ParameterDict()
- (lora_embedding_B): ParameterDict()
- )
- (to_out): ModuleList(
- (0): Linear(in_features=1280, out_features=1280, bias=True)
- (1): Dropout(p=0.0, inplace=False)
- )
- )
- (norm2): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
- (attn2): Attention(
- (to_q): lora.Linear(
- (base_layer): Linear(in_features=1280, out_features=1280, bias=False)
- (lora_dropout): ModuleDict(
- (default): Identity()
- )
- (lora_A): ModuleDict(
- (default): Linear(in_features=1280, out_features=16, bias=False)
- )
- (lora_B): ModuleDict(
- (default): Linear(in_features=16, out_features=1280, bias=False)
- )
- (lora_embedding_A): ParameterDict()
- (lora_embedding_B): ParameterDict()
- )
- (to_k): Linear(in_features=768, out_features=1280, bias=False)
- (to_v): lora.Linear(
- (base_layer): Linear(in_features=768, out_features=1280, bias=False)
- (lora_dropout): ModuleDict(
- (default): Identity()
- )
- (lora_A): ModuleDict(
- (default): Linear(in_features=768, out_features=16, bias=False)
- )
- (lora_B): ModuleDict(
- (default): Linear(in_features=16, out_features=1280, bias=False)
- )
- (lora_embedding_A): ParameterDict()
- (lora_embedding_B): ParameterDict()
- )
- (to_out): ModuleList(
- (0): Linear(in_features=1280, out_features=1280, bias=True)
- (1): Dropout(p=0.0, inplace=False)
- )
- )
- (norm3): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
- (ff): FeedForward(
- (net): ModuleList(
- (0): GEGLU(
- (proj): Linear(in_features=1280, out_features=10240, bias=True)
- )
- (1): Dropout(p=0.0, inplace=False)
- (2): Linear(in_features=5120, out_features=1280, bias=True)
- )
- )
- )
- )
- (proj_out): Conv2d(1280, 1280, kernel_size=(1, 1), stride=(1, 1))
- )
- )
- (resnets): ModuleList(
- (0-1): 2 x ResnetBlock2D(
- (norm1): GroupNorm(32, 1280, eps=1e-05, affine=True)
- (conv1): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- (time_emb_proj): Linear(in_features=1280, out_features=1280, bias=True)
- (norm2): GroupNorm(32, 1280, eps=1e-05, affine=True)
- (dropout): Dropout(p=0.0, inplace=False)
- (conv2): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- (nonlinearity): SiLU()
- )
- )
- )
- (conv_norm_out): GroupNorm(32, 320, eps=1e-05, affine=True)
- (conv_act): SiLU()
- (conv_out): Conv2d(320, 4, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- )
- )
- )
- trainable params: 589,824 || all params: 123,650,304 || trainable%: 0.4770097451600281
- PeftModel(
- (base_model): LoraModel(
- (model): CLIPTextModel(
- (text_model): CLIPTextTransformer(
- (embeddings): CLIPTextEmbeddings(
- (token_embedding): Embedding(49408, 768)
- (position_embedding): Embedding(77, 768)
- )
- (encoder): CLIPEncoder(
- (layers): ModuleList(
- (0-11): 12 x CLIPEncoderLayer(
- (self_attn): CLIPAttention(
- (k_proj): Linear(in_features=768, out_features=768, bias=True)
- (v_proj): lora.Linear(
- (base_layer): Linear(in_features=768, out_features=768, bias=True)
- (lora_dropout): ModuleDict(
- (default): Identity()
- )
- (lora_A): ModuleDict(
- (default): Linear(in_features=768, out_features=16, bias=False)
- )
- (lora_B): ModuleDict(
- (default): Linear(in_features=16, out_features=768, bias=False)
- )
- (lora_embedding_A): ParameterDict()
- (lora_embedding_B): ParameterDict()
- )
- (q_proj): lora.Linear(
- (base_layer): Linear(in_features=768, out_features=768, bias=True)
- (lora_dropout): ModuleDict(
- (default): Identity()
- )
- (lora_A): ModuleDict(
- (default): Linear(in_features=768, out_features=16, bias=False)
- )
- (lora_B): ModuleDict(
- (default): Linear(in_features=16, out_features=768, bias=False)
- )
- (lora_embedding_A): ParameterDict()
- (lora_embedding_B): ParameterDict()
- )
- (out_proj): Linear(in_features=768, out_features=768, bias=True)
- )
- (layer_norm1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
- (mlp): CLIPMLP(
- (activation_fn): QuickGELUActivation()
- (fc1): Linear(in_features=768, out_features=3072, bias=True)
- (fc2): Linear(in_features=3072, out_features=768, bias=True)
- )
- (layer_norm2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
- )
- )
- )
- (final_layer_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
- )
- )
- )
- )
- 12/24/2023 06:09:07 - INFO - __main__ - ***** Running training *****
- 12/24/2023 06:09:07 - INFO - __main__ - Num examples = 200
- 12/24/2023 06:09:07 - INFO - __main__ - Num batches each epoch = 200
- 12/24/2023 06:09:07 - INFO - __main__ - Num Epochs = 4
- 12/24/2023 06:09:07 - INFO - __main__ - Instantaneous batch size per device = 1
- 12/24/2023 06:09:07 - INFO - __main__ - Total train batch size (w. parallel, distributed & accumulation) = 1
- 12/24/2023 06:09:07 - INFO - __main__ - Gradient Accumulation steps = 1
- 12/24/2023 06:09:07 - INFO - __main__ - Total optimization steps = 800
- Steps: 0%| | 0/800 [00:00<?, ?it/s]/mnt/ssd1/home/kjetil/dev/lora_dreambooth/venv/lib/python3.11/site-packages/torch/cuda/memory.py:329: FutureWarning: torch.cuda.reset_max_memory_allocated now calls torch.cuda.reset_peak_memory_stats, which resets /all/ peak memory stats.
- warnings.warn(
- Traceback (most recent call last):
- File "/home/kjetil/dev/andres/ai-stuff/peft/examples/lora_dreambooth/train_dreambooth.py", line 1104, in <module>
- main(args)
- File "/home/kjetil/dev/andres/ai-stuff/peft/examples/lora_dreambooth/train_dreambooth.py", line 908, in main
- with TorchTracemalloc() if not args.no_tracemalloc else nullcontext() as tracemalloc:
- File "/home/kjetil/dev/andres/ai-stuff/peft/examples/lora_dreambooth/train_dreambooth.py", line 416, in __enter__
- torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/mnt/ssd1/home/kjetil/dev/lora_dreambooth/venv/lib/python3.11/site-packages/torch/cuda/memory.py", line 334, in reset_max_memory_allocated
- return reset_peak_memory_stats(device=device)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/mnt/ssd1/home/kjetil/dev/lora_dreambooth/venv/lib/python3.11/site-packages/torch/cuda/memory.py", line 307, in reset_peak_memory_stats
- return torch._C._cuda_resetPeakMemoryStats(device)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- RuntimeError: invalid argument to reset_peak_memory_stats
- Steps: 0%| | 0/800 [00:10<?, ?it/s]
- Traceback (most recent call last):
- File "/mnt/ssd1/home/kjetil/dev/lora_dreambooth/venv/bin/accelerate", line 8, in <module>
- sys.exit(main())
- ^^^^^^
- File "/mnt/ssd1/home/kjetil/dev/lora_dreambooth/venv/lib/python3.11/site-packages/accelerate/commands/accelerate_cli.py", line 47, in main
- args.func(args)
- File "/mnt/ssd1/home/kjetil/dev/lora_dreambooth/venv/lib/python3.11/site-packages/accelerate/commands/launch.py", line 1017, in launch_command
- simple_launcher(args)
- File "/mnt/ssd1/home/kjetil/dev/lora_dreambooth/venv/lib/python3.11/site-packages/accelerate/commands/launch.py", line 637, in simple_launcher
- raise subprocess.CalledProcessError(returncode=process.returncode, cmd=cmd)
- subprocess.CalledProcessError: Command '['/mnt/ssd1/home/kjetil/dev/lora_dreambooth/venv/bin/python3', 'train_dreambooth.py', '--pretrained_model_name_or_path=CompVis/stable-diffusion-v1-4', '--instance_data_dir=/home/kjetil/scratch/trening/', '--class_data_dir=/mnt/ssd1/home/kjetil/experiments/take1/class_dir', '--output_dir=/mnt/ssd1/home/kjetil/experiments/take1/output', '--train_text_encoder', '--with_prior_preservation', '--prior_loss_weight=1.0', '--num_dataloader_workers=1', '--instance_prompt=a photo of lyra dog', '--class_prompt=a photo of dog', '--resolution=512', '--train_batch_size=1', '--lr_scheduler=constant', '--lr_warmup_steps=0', '--num_class_images=200', '--use_lora', '--lora_r', '16', '--lora_alpha', '27', '--lora_text_encoder_r', '16', '--lora_text_encoder_alpha', '17', '--learning_rate=1e-4', '--gradient_accumulation_steps=1', '--gradient_checkpointing', '--max_train_steps=800']' returned non-zero exit status 1.
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement