Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- Here is part of the list of things that can be enabled and disable.. (Treated like Axioms if enabled)
- Mt : UniversalVocabularyMt
- [Mon](isa Bi-Mod-Disj-Introduction-Consequent-Weak ModalityFeature-Theorem)
- [Mon](isa Gen-Exist-DistributingOver-Conj ModalityFeature-Theorem)
- [Mon](isa ModalScheme-K ModalityFeature-Theorem)
- [Mon](isa Gen-Exportation ModalityFeature-Theorem)
- [Mon](isa ModalScheme-Ver ModalityFeature-Theorem)
- [Mon](isa Gen-Exist-DistributingOver-Disj ModalityFeature-Theorem)
- [Mon](isa Gen-Univ-DistributingOver-Cond ModalityFeature-Theorem)
- [Mon](isa Mod-Exist-DistributingOver-Disj ModalityFeature-Theorem)
- [Mon](isa ModalScheme-K-DualContrap ModalityFeature-Theorem)
- [Mon](isa Bi-Mod-RationalMonotonicity ModalityFeature-Theorem)
- [Mon](isa Mod-Exist-FactoringOutFrom-Disj ModalityFeature-Theorem)
- [Mon](isa ModalScheme-BF ModalityFeature-Theorem)
- [Mon](isa Gen-Conj-Elimination ModalityFeature-Theorem)
- [Mon](isa ModalScheme-4-Inverse ModalityFeature-Theorem)
- [Mon](isa ModalScheme-D ModalityFeature-Theorem)
- [Mon](isa Gen-Mod-BeckersRuleGeneralized ModalityFeature-Theorem)
- [Mon](isa Bi-Mod-TrivialImplication ModalityFeature-Theorem)
- [Mon](isa Mod-FactoringOutFrom-Conj-Dual ModalityFeature-Theorem)
- [Mon](isa ModalScheme-I-BF ModalityFeature-Theorem)
- [Mon](isa Mod-Dilemma ModalityFeature-Theorem)
- [Mon](isa Mod-Duals ModalityFeature-Theorem)
- [Mon](isa Mod-Univ-DistributingOver-Conj ModalityFeature-Theorem)
- [Mon](isa Mod-Univ-DistributingOver-Cond-Dual ModalityFeature-Theorem)
- [Mon](isa Gen-Disj-Introduction ModalityFeature-Theorem)
- [Mon](isa Mod-FactoringOutFrom-Disj ModalityFeature-Theorem)
- [Mon](isa Bi-Mod-Commutativity-Conj-Consequent ModalityFeature-Theorem)
- [Mon](isa ModalScheme-B-Inverse ModalityFeature-Theorem)
- [Mon](isa ModalScheme-B ModalityFeature-Theorem)
- [Mon](isa Mod-Equality ModalityFeature-Theorem)
- [Mon](isa Mod-DistributingOver-FactoringOutFrom-Disj ModalityFeature-Theorem)
- [Mon](isa Mod-Univ-DistributingOver-FactoringOutFrom-Conj ModalityFeature-Theorem)
- [Mon](isa Mod-DistributingOver-FactoringOutFrom-Conj ModalityFeature-Theorem)
- [Mon](isa Mod-DisjunctiveSyllogism ModalityFeature-Theorem)
- [Mon](isa Gen-ConditionalExchange ModalityFeature-Theorem)
- [Mon](isa Bi-Mod-Strengthening ModalityFeature-Theorem)
- [Mon](isa Mod-DistributingOver-Disj ModalityFeature-Theorem)
- [Mon](isa Mod-HypotheticalSyllogism ModalityFeature-Theorem)
- [Mon](isa Gen-Exist-FactoringOutFrom-Disj ModalityFeature-Theorem)
- [Mon](isa Bi-Mod-TrivialCentering ModalityFeature-Theorem)
- [Mon](isa Bi-Mod-Bivalence ModalityFeature-Theorem)
- [Mon](isa ModalScheme-W ModalityFeature-Theorem)
- [Mon](isa ModalScheme-K-Dual ModalityFeature-Theorem)
- [Mon](isa Gen-Contraposition ModalityFeature-Theorem)
- [Mon](isa ModalScheme-E-Inverse ModalityFeature-Theorem)
- [Mon](isa Mod-Univ-DistributingOver-Cond ModalityFeature-Theorem)
- [Mon](isa Mod-SettledContingency ModalityFeature-Theorem)
- [Mon](isa Gen-DoubleNegation ModalityFeature-Theorem)
- [Mon](isa Bi-Mod-SemiTransitivity ModalityFeature-Theorem)
- [Mon](isa Bi-Mod-Dilemma ModalityFeature-Theorem)
- [Mon](isa Bi-Mod-DoubleNegation-Consequent ModalityFeature-Theorem)
- [Mon](isa Gen-Commutativity-Disj ModalityFeature-Theorem)
- [Mon](isa Bi-Mod-Commutativity-Disj-Consequent ModalityFeature-Theorem)
- [Mon](isa Mod-Distinctness ModalityFeature-Theorem)
- [Mon](isa Bi-Mod-Commutativity-Conj-Antecedent ModalityFeature-Theorem)
- [Mon](isa Mod-Exist-DistributingOver-Conj ModalityFeature-Theorem)
- [Mon](isa Gen-Dilemma ModalityFeature-Theorem)
- [Mon](isa Gen-ModalScheme-K ModalityFeature-Theorem)
- [Mon](isa Bi-Mod-DeMorgan-Antecedent ModalityFeature-Theorem)
- [Mon](isa Bi-Mod-Conj-Elimination-Consequent ModalityFeature-Theorem)
- [Mon](isa Mod-DistributingOver-Conj ModalityFeature-Theorem)
- [Mon](isa Bi-Mod-WeakMonotonicity ModalityFeature-Theorem)
- [Mon](isa ModalScheme-T-Inverse ModalityFeature-Theorem)
- [Mon](isa Mod-EqualityReplacement ModalityFeature-Theorem)
- [Mon](isa Mod-DisjunctiveSyllogism-Dual ModalityFeature-Theorem)
- [Mon](isa Mod-NonTrivial ModalityFeature-Theorem)
- [Mon](isa Gen-Univ-FactoringOutFrom-Conj ModalityFeature-Theorem)
- [Mon](isa Mod-Univ-Exist-DistributingOver-Cond ModalityFeature-Theorem)
- [Mon](isa ModalScheme-BF-DualInverse ModalityFeature-Theorem)
- [Mon](isa Bi-Mod-Disj-Introduction-Consequent ModalityFeature-Theorem)
- [Mon](isa Gen-Equality ModalityFeature-Theorem)
- [Mon](isa Bi-Mod-DeMorgan-Consequent ModalityFeature-Theorem)
- [Mon](isa Mod-Univ-Exist-DistributingOver-Cond-Dual ModalityFeature-Theorem)
- [Mon](isa ModalScheme-E ModalityFeature-Theorem)
- [Mon](isa Bi-Mod-Cut ModalityFeature-Theorem)
- [Mon](isa ModalScheme-I-BF-DualInverse ModalityFeature-Theorem)
- [Mon](isa Bi-Mod-Conj-Introduction-Consequent ModalityFeature-Theorem)
- [Mon](isa Gen-DeMorgan-General ModalityFeature-Theorem)
- [Mon](isa Mod-Exist-DistributingOver-FactoringOutFrom-Disj ModalityFeature-Theorem)
- [Mon](isa Gen-Exist-Introduction ModalityFeature-Theorem)
- [Mon](isa Gen-Univ-Exist-DistributingOver-Cond ModalityFeature-Theorem)
- [Mon](isa Gen-Mod-HypotheticalSyllogism ModalityFeature-Theorem)
- [Mon](isa Mod-Univ-Elimination ModalityFeature-Theorem)
- [Mon](isa Bi-Mod-Detachment-Weak ModalityFeature-Theorem)
- [Mon](isa Bi-Mod-Transitivity ModalityFeature-Theorem)
- [Mon](isa Bi-Mod-DoubleNegation-Antecedent ModalityFeature-Theorem)
- [Mon](isa ModalScheme-T ModalityFeature-Theorem)
- [Mon](isa Bi-Mod-Commutativity-Disj-Antecedent ModalityFeature-Theorem)
- [Mon](isa Bi-Mod-Monotonicity ModalityFeature-Theorem)
- [Mon](isa BasicBeliefFeature ModalityFeature-Theorem)
- [Mon](isa Bi-Mod-Identity ModalityFeature-Theorem)
- [Mon](isa Gen-Univ-Elimination ModalityFeature-Theorem)
- [Mon](isa Gen-DeMorgan ModalityFeature-Theorem)
- [Mon](isa Mod-FactoringOutFrom-Conj ModalityFeature-Theorem)
- [Mon](isa ModalScheme-4 ModalityFeature-Theorem)
- [Mon](isa Gen-EqualityReplacement ModalityFeature-Theorem)
- [Mon](isa Gen-HypotheticalSyllogism ModalityFeature-Theorem)
- [Mon](isa Mod-Univ-FactoringOutFrom-Conj ModalityFeature-Theorem)
- [Mon](isa Gen-Univ-DistributingOver-Conj ModalityFeature-Theorem)
- [Mon](isa Bi-Mod-Specificity ModalityFeature-Theorem)
- [Mon](isa Mod-Exist-Introduction ModalityFeature-Theorem)
- [Mon](isa Gen-Commutativity-Conj ModalityFeature-Theorem)
- [Mon](isa Bi-Mod-Detachment ModalityFeature-Theorem)
- [Mon](isa Gen-Conj-Introduction ModalityFeature-Theorem)
- [Mon](isa Gen-Truth-Constant ModalityFeature-Theorem)
- [Mon](isa Gen-ModalScheme-T ModalityFeature-Theorem)
- [Mon](isa Bi-Mod-Identity-Consequent ModalityFeature-Theorem)
- [Mon](isa Gen-Exist-FactoringOutFrom-Disj-1 ModalityFeature-Theorem)
- [Mon](isa Gen-Univ-DistributingOver-Conj-1 ModalityFeature-Theorem)
- [Mon](isa Bi-Mod-Conj-Elimination-Consequent-Weak ModalityFeature-Theorem)
- [Def](isa ThePrototypicalModalityFeature-Theorem ModalityFeature-Theorem)
- [Mon](genls ModalityFeature-Theorem-Gen-Classical ModalityFeature-Theorem)
- [Inf](arg2Isa commonModalityFt-Theorems-QuanEq-Dual ModalityFeature-Theorem)
- [Inf](arg2Isa modalityFt-Theorems-QuanEq ModalityFeature-Theorem)
- [Inf](arg2Isa commonModalityFt-Theorems-Prop ModalityFeature-Theorem)
- [Inf](arg2Isa modalityFt-Theorems-Prop-Dual ModalityFeature-Theorem)
- [Inf](arg2Isa modalityFt-Theorems-Prop ModalityFeature-Theorem)
- [Inf](arg2Isa modalityFt-Theorems-QuanEq-Dual ModalityFeature-Theorem)
- [Inf](arg2Isa commonModalityFt-Theorems-Prop-Dual ModalityFeature-Theorem)
- [Inf](arg2Isa commonModalityFt-Theorems-QuanEq ModalityFeature-Theorem)
- Mt : ModalityMt
- [R](arg2Isa commonModalityFt-Theorems-QuanEq-Dual ModalityFeature-Theorem)
- [R](arg2Isa commonModalityFt-Theorems-QuanEq ModalityFeature-Theorem)
- [R](arg2Isa commonModalityFt-Theorems-Prop-Dual ModalityFeature-Theorem)
- [R](arg2Isa commonModalityFt-Theorems-Prop ModalityFeature-Theorem)
- [R](arg2Isa modalityFt-Theorems-QuanEq-Dual ModalityFeature-Theorem)
- [R](arg2Isa modalityFt-Theorems-QuanEq ModalityFeature-Theorem)
- [R](arg2Isa modalityFt-Theorems-Prop-Dual ModalityFeature-Theorem)
- [R](arg2Isa modalityFt-Theorems-Prop ModalityFeature-Theorem)
- Mt : UniversalVocabularyMt
- [Def](hlPrototypicalInstance ThePrototypicalModalityFeature-Theorem ModalityFeature-Theorem)
- GAF Arg : 3
- Mt : UniversalVocabularyMt
- [R](argIsa commonModalityFt-Theorems-Prop-Dual 2 ModalityFeature-Theorem)
- [R](argIsa modalityFt-Theorems-QuanEq-Dual 2 ModalityFeature-Theorem)
- [R](argIsa commonModalityFt-Theorems-QuanEq 2 ModalityFeature-Theorem)
- [R](argIsa modalityFt-Theorems-Prop-Dual 2 ModalityFeature-Theorem)
- [R](argIsa modalityFt-Theorems-Prop 2 ModalityFeature-Theorem)
- [R](argIsa modalityFt-Theorems-QuanEq 2 ModalityFeature-Theorem)
- [R](argIsa commonModalityFt-Theorems-Prop 2 ModalityFeature-Theorem)
- [R](argIsa commonModalityFt-Theorems-QuanEq-Dual 2 ModalityFeature-Theorem)
- Mt : ModalityMt
- [Inf](argIsa commonModalityFt-Theorems-QuanEq-Dual 2 ModalityFeature-Theorem)
- [Inf](argIsa commonModalityFt-Theorems-QuanEq 2 ModalityFeature-Theorem)
- [Inf](argIsa commonModalityFt-Theorems-Prop-Dual 2 ModalityFeature-Theorem)
- [Inf](argIsa commonModalityFt-Theorems-Prop 2 ModalityFeature-Theorem)
- [Inf](argIsa modalityFt-Theorems-QuanEq-Dual 2 ModalityFeature-Theorem)
- [Inf](argIsa modalityFt-Theorems-Prop-Dual 2 ModalityFeature-Theorem)
- [Inf](argIsa modalityFt-Theorems-QuanEq 2 ModalityFeature-Theorem)
- [Inf](argIsa modalityFt-Theorems-Prop 2 ModalityFeature-Theorem)
- NART Arg : 3
- [Mon](ThePartition ModalityFeature-Rule ModalityFeature-System ModalityFeature-Theorem)
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement