Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- import numpy as np
- import pandas as pd
- from sklearn.model_selection import train_test_split
- columns = ['комнаты', 'площадь', 'кухня', 'пл. жилая', 'этаж', 'всего этажей', 'цена']
- data = pd.DataFrame([
- [1, 38.5, 6.9, 18.9, 3, 5, 4200000],
- [1, 38.0, 8.5, 19.2, 9, 17, 3500000],
- [1, 34.7, 10.3, 19.8, 1, 9, 5100000],
- [1, 45.9, 11.1, 17.5, 11, 23, 6300000],
- [1, 42.4, 10.0, 19.9, 6, 14, 5900000],
- [1, 46.0, 10.2, 20.5, 3, 12, 8100000],
- [2, 77.7, 13.2, 39.3, 3, 17, 7400000],
- [2, 69.8, 11.1, 31.4, 12, 23, 7200000],
- [2, 78.2, 19.4, 33.2, 4, 9, 6800000],
- [2, 55.5, 7.8, 29.6, 1, 25, 9300000],
- [2, 74.3, 16.0, 34.2, 14, 17, 10600000],
- [2, 78.3, 12.3, 42.6, 23, 23, 8500000],
- [2, 74.0, 18.1, 49.0, 8, 9, 6000000],
- [2, 91.4, 20.1, 60.4, 2, 10, 7200000],
- [3, 85.0, 17.8, 56.1, 14, 14, 12500000],
- [3, 79.8, 9.8, 44.8, 9, 10, 13200000],
- [3, 72.0, 10.2, 37.3, 7, 9, 15100000],
- [3, 95.3, 11.0, 51.5, 15, 23, 9800000],
- [3, 69.3, 8.5, 39.3, 4, 9, 11400000],
- [3, 89.8, 11.2, 58.2, 24, 25, 16300000],
- ], columns=columns)
- features = data.drop('цена', axis=1)
- target = data['цена']
- train_features, test_features, train_target, test_target = train_test_split(features, target,
- test_size=0.25,
- random_state=1234)
- class LinearRegression:
- def fit(self, train_features, train_target):
- self.w = None
- self.w0 = None
- def predict(self, test_features):
- s = len(test_features)
- return np.zeros(s, dtype=int)
- model = LinearRegression()
- model.fit(train_features, train_target)
- predictions = model.predict(test_features)
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement