Advertisement
ProzacR

R models

Mar 13th, 2014
478
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 1.48 KB | None | 0 0
  1. > summary(mod_lie_j)
  2.  
  3. Call:
  4. lm(formula = data[, 7] ~ lj + qq + data[, 1])
  5.  
  6. Residuals:
  7. 1 2 3 4 5 6 7
  8. -0.391519 1.204999 -1.194907 -0.302552 -0.255680 -0.001247 0.940906
  9.  
  10. Coefficients:
  11. Estimate Std. Error t value Pr(>|t|)
  12. (Intercept) 48.253307 8.725644 5.530 0.0117 *
  13. lj 0.911253 0.195983 4.650 0.0188 *
  14. qq -0.010194 0.002666 -3.823 0.0315 *
  15. data[, 1] 2.005974 0.578837 3.466 0.0405 *
  16. ---
  17. Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
  18.  
  19. Residual standard error: 1.166 on 3 degrees of freedom
  20. Multiple R-squared: 0.9036, Adjusted R-squared: 0.8073
  21. F-statistic: 9.376 on 3 and 3 DF, p-value: 0.04929
  22.  
  23. > mod_lie<-lm(data[,7] ~ lj+qq)
  24. > summary(mod_lie)
  25.  
  26. Call:
  27. lm(formula = data[, 7] ~ lj + qq)
  28.  
  29. Residuals:
  30. 1 2 3 4 5 6 7
  31. -2.03372 0.29986 0.63260 0.04142 -2.15618 -0.11560 3.33162
  32.  
  33. Coefficients:
  34. Estimate Std. Error t value Pr(>|t|)
  35. (Intercept) 18.384714 2.637232 6.971 0.00223 **
  36. lj 0.455216 0.281335 1.618 0.18096
  37. qq -0.002991 0.003235 -0.925 0.40750
  38. ---
  39. Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
  40.  
  41. Residual standard error: 2.258 on 4 degrees of freedom
  42. Multiple R-squared: 0.5178, Adjusted R-squared: 0.2767
  43. F-statistic: 2.148 on 2 and 4 DF, p-value: 0.2325
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement