Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- > summary(mod_lie_j)
- Call:
- lm(formula = data[, 7] ~ lj + qq + data[, 1])
- Residuals:
- 1 2 3 4 5 6 7
- -0.391519 1.204999 -1.194907 -0.302552 -0.255680 -0.001247 0.940906
- Coefficients:
- Estimate Std. Error t value Pr(>|t|)
- (Intercept) 48.253307 8.725644 5.530 0.0117 *
- lj 0.911253 0.195983 4.650 0.0188 *
- qq -0.010194 0.002666 -3.823 0.0315 *
- data[, 1] 2.005974 0.578837 3.466 0.0405 *
- ---
- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
- Residual standard error: 1.166 on 3 degrees of freedom
- Multiple R-squared: 0.9036, Adjusted R-squared: 0.8073
- F-statistic: 9.376 on 3 and 3 DF, p-value: 0.04929
- > mod_lie<-lm(data[,7] ~ lj+qq)
- > summary(mod_lie)
- Call:
- lm(formula = data[, 7] ~ lj + qq)
- Residuals:
- 1 2 3 4 5 6 7
- -2.03372 0.29986 0.63260 0.04142 -2.15618 -0.11560 3.33162
- Coefficients:
- Estimate Std. Error t value Pr(>|t|)
- (Intercept) 18.384714 2.637232 6.971 0.00223 **
- lj 0.455216 0.281335 1.618 0.18096
- qq -0.002991 0.003235 -0.925 0.40750
- ---
- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
- Residual standard error: 2.258 on 4 degrees of freedom
- Multiple R-squared: 0.5178, Adjusted R-squared: 0.2767
- F-statistic: 2.148 on 2 and 4 DF, p-value: 0.2325
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement