Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- # numpy_neural_in_9_lines.py
- from numpy import exp, array, random, dot
- training_set_inputs = array([[0, 0, 1], [1, 1, 1], [1, 0, 1], [0, 1, 1]])
- training_set_outputs = array([[0, 1, 1, 0]]).T
- random.seed(1)
- synaptic_weights = 2 * random.random((3, 1)) - 1
- for iteration in xrange(10000):
- output = 1 / (1 + exp(-(dot(training_set_inputs, synaptic_weights))))
- synaptic_weights += dot(training_set_inputs.T, (training_set_outputs - output) * output * (1 - output))
- print 1 / (1 + exp(-(dot(array([1, 0, 0]), synaptic_weights))))
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement