Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- \documentclass{article}
- \usepackage{amsmath}
- \usepackage{multicol}
- \usepackage{geometry}
- % Set page margins
- \geometry{left=1cm, right=1cm, top=1cm, bottom=1cm}
- % Increase the column separation
- \setlength{\columnsep}{1cm}
- % Define a new command for a non-wrapping line of text with a formula
- \newcommand{\formulaitem}[2]{
- \noindent\textbf{#1}\hfill$#2$\\[12pt]
- }
- \begin{document}
- \begin{multicols}{2}
- [
- \section*{Physics Formula Sheet}
- This formula sheet covers key equations for rotational kinematics, springs and harmonic motion, kinematics, forces, torque, momentum, collisions, energy, and work.
- ]
- \formulaitem{Rotational Kinematics: Arc Length:}{S = r\Delta\theta}
- \formulaitem{Angular Acceleration:}{\alpha = \frac{\Delta\omega}{\Delta t}}
- \formulaitem{Angular Velocity:}{\omega = \frac{\Delta\theta}{\Delta t}}
- \formulaitem{Velocity:}{V = r\omega = \frac{s}{\Delta t} = \frac{r\Delta\theta}{\Delta t}}
- \formulaitem{Tangential Acceleration:}{a_{\text{tan}} = r\alpha = \frac{r\Delta v}{\Delta t} = \frac{r\Delta\omega}{\Delta t}}
- \formulaitem{Centripetal Acceleration:}{a_c = r\omega^2 = \frac{v^2}{r}}
- \formulaitem{Rotational Kinetic Energy:}{K_{\text{rot}} = \frac{1}{2}I\omega^2}
- \formulaitem{Angular Momentum:}{L = I\omega}
- \formulaitem{Change in Angular Momentum:}{\Delta L = \tau\Delta t}
- \formulaitem{Relationship between Linear and Angular Quantities:}{\omega = \frac{v}{r}, \Delta\theta = \Delta x}
- \formulaitem{Springs and Harmonic Motion: Displacement in SHM:}{x = A \cos(2\pi ft)}
- \formulaitem{Period of a Spring:}{T_s = 2\pi \sqrt{\frac{m}{k}}}
- \formulaitem{Potential Energy in a Spring:}{U_s = \frac{kx^2}{2}}
- \formulaitem{Force by a Spring:}{F_s = kx}
- \formulaitem{Period of a Pendulum:}{T_p = 2\pi \sqrt{\frac{l}{g}}}
- \formulaitem{Kinematics: Projectile Motion:}{V_{iy} = V \sin \theta, V_{ix} = V \cos \theta}
- \formulaitem{Final Velocity:}{v_f = v_i + at}
- \formulaitem{Acceleration (from velocities):}{a = \frac{v_f - v_i}{t}}
- \formulaitem{Initial Velocity (from final velocity):}{v_i = v_f - at}
- \formulaitem{Final Velocity (from displacement):}{v_f^2 = v_i^2 + 2a\Delta x}
- \formulaitem{Acceleration (from velocities and displacement):}{a = \frac{v_f^2 - v_i^2}{2\Delta x}}
- \formulaitem{Displacement (from velocity and time):}{\Delta x = v_i t + \frac{1}{2}at^2}
- \formulaitem{Acceleration (from displacement and time):}{a = \frac{2(\Delta x - v_i t)}{t^2}}
- \formulaitem{Average Velocity (from displacement and time):}{\Delta x = \frac{(v_i + v_f)t}{2}}
- \formulaitem{Final Velocity (from displacement and time):}{v_f = \frac{2\Delta x}{t} - v_i}
- \formulaitem{Forces: Newton's Second Law:}{F = ma}
- \formulaitem{Friction Force:}{F_f = \mu F_N}
- \formulaitem{Torque and Center of Mass: Torque:}{\tau = rF \cos \Theta, \tau = rF \sin \Theta}
- \formulaitem{Momentum and Collisions: Momentum:}{p = mv}
- \formulaitem{Impulse:}{J = Ft = \Delta p}
- \formulaitem{Elastic Collision:}{m_1 v_{1i} + m_2 v_{2i} = m_1 v_{1f} + m_2 v_{2f}}
- \formulaitem{Inelastic Collision:}{m_1 v_{1i} + m_2 v_{2i} = (m_1 + m_2)v}
- \formulaitem{Explosions:}{(m_1 + m_2)v = m_1 v_{1f} + m_2 v_{2f}}
- \formulaitem{Energy and Work: Potential Energy:}{U = mgh}
- \formulaitem{Spring Potential Energy:}{U_{\text{spring}} = \frac{1}{2}kx^2}
- \formulaitem{Kinetic Energy:}{K = \frac{1}{2}mv^2}
- \formulaitem{Power:}{P = \frac{W}{t} = \frac{F d}{t}}
- \end{multicols}
- \end{document}
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement