Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- from fastapi import FastAPI, File, UploadFile
- import shutil, os
- from ocr_processor import ocr_from_pdf
- from llama_cpp import Llama
- app = FastAPI()
- MODEL_PATH = "./models/Mistral-Nemo-Instruct-2407-Q4_K_M.gguf"
- llm = Llama(model_path=MODEL_PATH, n_ctx=8192, n_gpu_layers=41, verbose=True)
- @app.post("/upload/")
- async def upload_pdf(file: UploadFile = File(...)):
- temp_path = f"/tmp/{file.filename}"
- with open(temp_path, "wb") as f:
- shutil.copyfileobj(file.file, f)
- ocr_text = ocr_from_pdf(temp_path)
- os.remove(temp_path)
- result = llm(ocr_text)
- return {"output": result["choices"][0]["text"].strip()}
- from fastapi import FastAPI, File, UploadFile
- import shutil, os
- from ocr_processor import ocr_from_pdf
- from llama_cpp import Llama
- app = FastAPI()
- MODEL_PATH = "./models/Mistral-Nemo-Instruct-2407-Q4_K_M.gguf"
- llm = Llama(model_path=MODEL_PATH, n_ctx=8192, n_gpu_layers=41, verbose=True)
- @app.post("/upload/")
- async def upload_pdf(file: UploadFile = File(...)):
- temp_path = f"/tmp/{file.filename}"
- with open(temp_path, "wb") as f:
- shutil.copyfileobj(file.file, f)
- ocr_text = ocr_from_pdf(temp_path)
- os.remove(temp_path)
- result = llm(ocr_text)
- return {"output": result["choices"][0]["text"].strip()}
- FROM nvidia/cuda:12.3.1-devel-ubuntu22.04
- SHELL ["/bin/bash", "-c"]
- RUN apt-get update && apt-get install -y \
- python3-dev python3-pip \
- curl \
- build-essential \
- software-properties-common \
- tesseract-ocr \
- poppler-utils \
- libglib2.0-0 \
- libsm6 \
- libxext6 \
- libxrender-dev \
- && rm -rf /var/lib/apt/lists/*
- RUN apt-get update && apt-get install -y ninja-build git
- ENV CUDACXX=/usr/local/cuda-12/bin/nvcc
- ENV CMAKE_ARGS="-DGGML_CUDA=on -DCMAKE_CUDA_ARCHITECTURES=all-major"
- WORKDIR /app
- COPY . /app
- RUN pip install --no-cache-dir --upgrade pip && \
- pip install --no-cache-dir -r requirements.txt
- services:
- llm-ocr:
- build: .
- container_name: llm_ocr_gpu
- volumes:
- - ./models:/app/models
- deploy:
- resources:
- reservations:
- devices:
- - driver: nvidia
- device_ids: ['0']
- capabilities: [gpu]
- ports:
- - "8000:8000"
- stdin_open: true
- tty: true
- command: ["uvicorn", "api_server:app", "--host", "0.0.0.0", "--port", "8000"]
- from llama_cpp import Llama
- print('Loading model...')
- MODEL_PATH = "./models/Mistral-Nemo-Instruct-2407-Q4_K_M.gguf"
- llm = Llama(model_path=MODEL_PATH, n_ctx=8192, n_gpu_layers=41, verbose=True)
- print('Model loaded.')
- from fastapi import FastAPI, File, UploadFile, Header, HTTPException
- import shutil, os
- from ocr_processor import ocr_from_pdf
- from llama_cpp import Llama
- app = FastAPI()
- MODEL_PATH = "./models/Mistral-Nemo-Instruct-2407-Q4_K_M.gguf"
- llm = Llama(model_path=MODEL_PATH, n_ctx=8192, n_gpu_layers=41, verbose=True)
- API_TOKEN = "supersecret" # Change this to a secure token
- def authorize(authorization: str):
- if not authorization or not authorization.startswith("Bearer "):
- raise HTTPException(status_code=401, detail="Missing or invalid authorization header")
- token = authorization.split(" ")[1]
- if token != API_TOKEN:
- raise HTTPException(status_code=403, detail="Invalid token")
- @app.post("/upload/")
- async def upload_pdf(file: UploadFile = File(...), authorization: str = Header(None)):
- authorize(authorization)
- temp_path = f"/tmp/{file.filename}"
- with open(temp_path, "wb") as f:
- shutil.copyfileobj(file.file, f)
- ocr_text = ocr_from_pdf(temp_path)
- os.remove(temp_path)
- result = llm(ocr_text)
- return {"output": result["choices"][0]["text"].strip()}
- from fastapi import Request, HTTPException
- from starlette.middleware.base import BaseHTTPMiddleware
- WHITELIST = {"127.0.0.1", "192.168.1.100"} # Set your safe IPs
- BLACKLIST = {"10.0.0.5", "172.16.0.8"} # Block these IPs
- class IPFilterMiddleware(BaseHTTPMiddleware):
- async def dispatch(self, request: Request, call_next):
- client_ip = request.client.host
- if client_ip in BLACKLIST:
- raise HTTPException(status_code=403, detail="IP blocked")
- if WHITELIST and client_ip not in WHITELIST:
- raise HTTPException(status_code=403, detail="IP not in whitelist")
- return await call_next(request)
- from fastapi import FastAPI, Depends, File, UploadFile, HTTPException, Security
- from fastapi.security import OAuth2PasswordBearer, SecurityScopes
- from starlette.status import HTTP_403_FORBIDDEN
- import shutil, os
- from ocr_processor import ocr_from_pdf
- from llama_cpp import Llama
- from ip_filter import IPFilterMiddleware
- app = FastAPI()
- app.add_middleware(IPFilterMiddleware)
- oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token", scopes={"read": "Read OCR", "write": "Run OCR + LLM"})
- FAKE_TOKENS = {
- "admin-token": {"scopes": ["read", "write"]},
- "read-only-token": {"scopes": ["read"]}
- }
- MODEL_PATH = "./models/Mistral-Nemo-Instruct-2407-Q4_K_M.gguf"
- llm = Llama(model_path=MODEL_PATH, n_ctx=8192, n_gpu_layers=41, verbose=True)
- def get_current_user(security_scopes: SecurityScopes, token: str = Depends(oauth2_scheme)):
- if token not in FAKE_TOKENS:
- raise HTTPException(status_code=401, detail="Invalid token")
- token_scopes = FAKE_TOKENS[token]["scopes"]
- for scope in security_scopes.scopes:
- if scope not in token_scopes:
- raise HTTPException(status_code=403, detail="Not enough permissions")
- return token
- @app.post("/upload/")
- async def upload_pdf(file: UploadFile = File(...), token: str = Security(get_current_user, scopes=["write"])):
- temp_path = f"/tmp/{file.filename}"
- with open(temp_path, "wb") as f:
- shutil.copyfileobj(file.file, f)
- ocr_text = ocr_from_pdf(temp_path)
- os.remove(temp_path)
- result = llm(ocr_text)
- return {"output": result["choices"][0]["text"].strip()}
- /////////
- For server_api.py testing
- from fastapi.security import OAuth2PasswordRequestForm
- @app.post("/token")
- async def login(form_data: OAuth2PasswordRequestForm = Depends()):
- if form_data.username == "admin" and form_data.password == "secret":
- return {"access_token": "admin-token", "token_type": "bearer"}
- elif form_data.username == "reader" and form_data.password == "read":
- return {"access_token": "read-only-token", "token_type": "bearer"}
- else:
- raise HTTPException(status_code=400, detail="Invalid credentials")
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement