Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- import pandas as pd
- import numpy as np
- import matplotlib.pyplot as plt
- import seaborn as sns
- from sklearn.preprocessing import QuantileTransformer
- import statsmodels.api as sm
- from statsmodels.stats.multitest import multipletests
- import scanpy as sc
- # Step 1: Load the Data
- data_dir = 'path_to_your_data_directory/'
- # Assuming your data is in CSV format; modify this as needed
- demo_data = pd.read_csv(f'{data_dir}/your_data.csv')
- # Step 2: Data Normalization
- transformer = QuantileTransformer(output_distribution='normal')
- normalized_data = pd.DataFrame(transformer.fit_transform(demo_data.iloc[:, 1:]), columns=demo_data.columns[1:])
- normalized_data.insert(0, 'Sample', demo_data['Sample']) # Preserving the sample column
- # Step 3: Quality Control and Filtering
- filtered_data = normalized_data[normalized_data['ROICount'] > 100] # Modify based on your QC metric
- # Step 4: Exploratory Data Analysis - Boxplot
- plt.figure(figsize=(10, 6))
- sns.boxplot(data=filtered_data.melt(id_vars=['Sample']), x='variable', y='value')
- plt.xticks(rotation=90)
- plt.show()
- # Step 5: Differential Expression Analysis
- # Assuming 'Group' is a categorical column in your data
- design_matrix = pd.get_dummies(filtered_data['Group'], drop_first=True)
- # Fit a linear model (example: expression vs group)
- model = sm.OLS(filtered_data.drop(columns=['Sample', 'Group']).values, design_matrix.values).fit()
- results = model.summary()
- # Extract p-values for differential expression
- pvals = model.pvalues
- adjusted_pvals = multipletests(pvals, alpha=0.05, method='fdr_bh')[1]
- top_genes = filtered_data.columns[adjusted_pvals < 0.05]
- # Step 6: Heatmap Visualization
- sns.clustermap(filtered_data.drop(columns=['Sample', 'Group']).T, cmap="viridis", figsize=(10,10))
- plt.show()
- # Step 7: Save Results
- filtered_data.to_csv('filtered_data.csv', index=False)
- # Optional Step: Advanced Analysis - Clustering with Scanpy (for single-cell RNA-seq data)
- adata = sc.AnnData(filtered_data.drop(columns=['Sample', 'Group']).values)
- sc.pp.neighbors(adata, n_neighbors=10)
- sc.tl.umap(adata)
- sc.pl.umap(adata, color='Sample')
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement