Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- import tensorflow as tf
- from tensorflow.keras import layers
- # Load the dataset
- (train_images, train_labels), (test_images, test_labels) = tf.keras.datasets.mnist.load_data()
- # Preprocess the data
- train_images = train_images.reshape((60000, 28, 28, 1))
- train_images = train_images.astype('float32') / 255
- test_images = test_images.reshape((10000, 28, 28, 1))
- test_images = test_images.astype('float32') / 255
- # Define the model
- model = tf.keras.Sequential([
- layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),
- layers.MaxPooling2D((2, 2)),
- layers.Conv2D(64, (3, 3), activation='relu'),
- layers.MaxPooling2D((2, 2)),
- layers.Conv2D(64, (3, 3), activation='relu'),
- layers.Flatten(),
- layers.Dense(64, activation='relu'),
- layers.Dense(10)
- ])
- # Compile the model
- model.compile(optimizer='adam',
- loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
- metrics=['accuracy'])
- # Train the model
- history = model.fit(train_images, train_labels, epochs=10,
- validation_data=(test_images, test_labels))
- # Evaluate the model
- test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)
- print('Test accuracy:', test_acc)
- # THIS CODE TAKES AN IMAGE - GUESSES WHAT IT IS FROM A DATASET OF OVER 60,000+ LABELED IMAGES LIKE AIRPLANE, BIRD, HOUSE etc. AND CLASSIFIES YOUR IMAGE.
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement