Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- import java.util.ArrayList;
- import java.util.Collections;
- import java.util.List;
- // Kaizer here. I implemented and compared different sorting algorithms using 3 main ones. quicksort, mergesort, and heapsort, in terms of performance.
- public class SortingComparison {
- // function to print an array
- public static void printArray(List<Integer> arr) {
- for (int num : arr) {
- System.out.print(num + " ");
- }
- System.out.println();
- }
- // quicksort implementation
- public static int partition(List<Integer> arr, int low, int high) {
- int pivot = arr.get(high);
- int i = low - 1;
- for (int j = low; j < high; j++) {
- if (arr.get(j) < pivot) {
- i++;
- Collections.swap(arr, i, j);
- }
- }
- Collections.swap(arr, i + 1, high);
- return i + 1;
- }
- public static void quicksort(List<Integer> arr, int low, int high) {
- if (low < high) {
- int pi = partition(arr, low, high);
- quicksort(arr, low, pi - 1);
- quicksort(arr, pi + 1, high);
- }
- }
- // mergesort implementation
- public static void merge(List<Integer> arr, int left, int mid, int right) {
- int n1 = mid - left + 1;
- int n2 = right - mid;
- List<Integer> L = new ArrayList<>(n1);
- List<Integer> R = new ArrayList<>(n2);
- for (int i = 0; i < n1; i++)
- L.add(arr.get(left + i));
- for (int j = 0; j < n2; j++)
- R.add(arr.get(mid + 1 + j));
- int i = 0, j = 0, k = left;
- while (i < n1 && j < n2) {
- if (L.get(i) <= R.get(j)) {
- arr.set(k, L.get(i));
- i++;
- } else {
- arr.set(k, R.get(j));
- j++;
- }
- k++;
- }
- while (i < n1) {
- arr.set(k, L.get(i));
- i++;
- k++;
- }
- while (j < n2) {
- arr.set(k, R.get(j));
- j++;
- k++;
- }
- }
- public static void mergesort(List<Integer> arr, int left, int right) {
- if (left < right) {
- int mid = left + (right - left) / 2;
- mergesort(arr, left, mid);
- mergesort(arr, mid + 1, right);
- merge(arr, left, mid, right);
- }
- }
- // heapsort implementation
- public static void heapify(List<Integer> arr, int n, int i) {
- int largest = i;
- int left = 2 * i + 1;
- int right = 2 * i + 2;
- if (left < n && arr.get(left) > arr.get(largest))
- largest = left;
- if (right < n && arr.get(right) > arr.get(largest))
- largest = right;
- if (largest != i) {
- Collections.swap(arr, i, largest);
- heapify(arr, n, largest);
- }
- }
- public static void heapsort(List<Integer> arr) {
- int n = arr.size();
- for (int i = n / 2 - 1; i >= 0; i--)
- heapify(arr, n, i);
- for (int i = n - 1; i > 0; i--) {
- Collections.swap(arr, 0, i);
- heapify(arr, i, 0);
- }
- }
- // function to measure and compare sorting times
- public static void compareSorts(List<Integer> arr) {
- List<Integer> arr1 = new ArrayList<>(arr);
- List<Integer> arr2 = new ArrayList<>(arr);
- List<Integer> arr3 = new ArrayList<>(arr);
- long start = System.nanoTime();
- quicksort(arr1, 0, arr1.size() - 1);
- long end = System.nanoTime();
- double quicksortTime = (end - start) / 1e9;
- System.out.println("Quicksort time: " + quicksortTime + " seconds");
- start = System.nanoTime();
- mergesort(arr2, 0, arr2.size() - 1);
- end = System.nanoTime();
- double mergesortTime = (end - start) / 1e9;
- System.out.println("Mergesort time: " + mergesortTime + " seconds");
- start = System.nanoTime();
- heapsort(arr3);
- end = System.nanoTime();
- double heapsortTime = (end - start) / 1e9;
- System.out.println("Heapsort time: " + heapsortTime + " seconds");
- }
- public static void main(String[] args) {
- List<Integer> arr = new ArrayList<>(List.of(12, 11, 13, 5, 6, 7));
- System.out.print("Original array: ");
- printArray(arr);
- compareSorts(arr);
- }
- }
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement