Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- \documentclass{article}
- \usepackage[utf8]{inputenc}
- \usepackage{amsmath}
- \usepackage{amssymb}
- \usepackage{esvect}
- \title{Document 2 - Basics}
- \author{Thomas Boufikos}
- \date{September 2021}
- \begin{document}
- \maketitle
- \section{Calculus notation} \\ \\
- One example of a polynomial is: $ f(x) = a_nx^n + a_{n-1}x^{n-1} + \ldots + a_1x + a_0$. \\
- One example of exponentials is: $ g(x) = c_1e^{r_1x} + c_2e^{r_2x}$. \\
- Don't forget the basic identity: \\
- \[
- \sin^2x + \cos^2x = 1 \implies \sin x = \pm \sqrt{1 - \cos^2x}
- \] \\ \\ \\
- \underline{\textbf {Limits notation}} \\
- \[
- \begin{align*}
- \lim _{x \to 0} \frac{x^2 + 1}{x^2 - 1} = 1 \\
- \lim _{x \to \infty} \frac{x^2 + 1}{x^2 - 1} = 1
- \end{align*}
- \] \\ \\
- If $ \lim _{x \to a} f(x) = M $ and $ \lim _{x \to a} g(x) = M $ and we also know that: \\
- $ f(x) \leq h(x) \leq g(x)$, then: \\
- \[
- \lim _{x \to a} h(x) = M
- \] \\ \\ \\
- \underline{\textbf {Summation notation}} \\ \\
- We know that this sum diverges: $ \sum _{n=1}^{\infty} \frac{1}{n} = \infty $, while: \\
- \[
- \sum _{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}
- \] \\
- converges to a real number. \\ \\
- \[
- \sum _{n=0}^N \sum _{m=0}^N a_n a_m= \left( \sum _{n=0}^N a_n \right) ^2
- \] \\ \\ \\
- \underline{\textbf {Integrals notation}} \\ \\
- \[
- \int _{-\infty}^{\infty} f(x) \, dx = \lim _{x \to \infty} f(x) - \lim _{x \to -\infty} f(x) \\
- \]
- If f is the derivative of F, then: $ \int_R f(x) \, dx = F(x) $ \\ \\
- Volume = $ \iiint _D f(x,y,z) \, dx \, dy \, dz$. \\ \\
- Now, we are gonna see the vertical bar: \\
- \[
- \int _a^b f(x) \, dx = F(x) \bigg\vert _a^b
- \] \\
- In inline notation, we have: $ \int _a^b f(x) \, dx = F(x) \big\vert _a^b $. \\ \\ \\
- If a function $ f = f(x,y) $ has these 2 variables $x$ and $y$, then we can define: \\
- \begin{center}
- $ \frac{\partial f}{\partial x} $ and $ \frac{\partial f}{\partial x} $
- \end{center}. \\ \\ \\
- \textbf\textit{{Example: }} $f(x,y) = x^2 + 2xy + e^{2y}$, then: \\
- \[
- \begin{align}
- \frac{\partial f}{\partial x} = 2x + 2y \\
- \frac{\partial f}{\partial y} = 2y + 2e^{2y}
- \end{align}
- \] \\ \\
- \underline{\textbf {More derivatives}} \\ \\
- If $ f(x) = x^3 $, then $ f'(x) = 3x^2, f''(x) = 6x$. \\
- If f is a time variable-based function $f(t)$, then we can do this: \\
- \[
- \begin{align}
- f(t) = \sin t + 2t \\
- \dot{f}(t) = \cos t + 2 \\
- \ddot{f}(t) = - \sin t
- \end{align}
- \] \\ \\ \\
- \underline{\textbf {Vectors (esvect package)}} \\ \\
- \[
- \vv{r}(t) = \langle x(t), y(t), z(t) \rangle = \langle \sin t, \cos t, t \rangle
- \]
- \[
- \dot{\vv{r}}(t) = \langle x'(t), y'(t), z'(t) \rangle = \langle \cos t, -\sin t, 1 \rangle
- \] \\ \\
- Now, the last thing to do is to remember the Faraday's Law of Injuction: \\
- \[
- \begin{align}
- \vv{\nabla} \times \vv{E} = - \frac{\partial \vv{B}}{\partial t} \\
- \oint \vv{E} \cdot d\vv{S} = \frac{d\Phi_B}{dt}
- \end{align}
- \] \\ \\ \\ \\
- \section{Miscellaneous notation} \\ \\
- \underline{\textbf {Roots}} \\ \\
- $ \sqrt{144} = 12 $, $ \sqrt{a} + \sqrt{b} > \sqrt{a+b} $ \\
- $ \sqrt{\frac{x}{y}} = \frac{\sqrt{x}}{\sqrt{y}} $ \\
- $ \sqrt[n]{a} = a^{\frac{1}{n}} $, for every n. \\ \\ \\
- \underline{\textbf {The quadratic formula: }}
- If $ ax^2 + bx + c = 0$, then solutions: $x = \frac{-b \pm \sqrt{\Delta}}{2a}$, where: \\
- \[
- \Delta = b^2 - 4ac
- \] \\ \\ \\ \\
- \underline{\textbf {Set Relationships}} \\ \\
- When A is subset of B, we write: $ A \subset B $ and the probabilities go on: \\
- \[
- Pr(A) < Pr(B)
- \] \\
- But if $ A \supseteq B $, then it must be: $ Pr(A) \geq Pr(B) $. \\ \\ \\
- \underline{\textbf {Probability rules}} \\ \\
- \begin{enumerate}
- \item If $A$ is a set of the space $\Omega$, then we know that if an event $x \in A$
- exists in our set, its possibility follows the rule: $Pr(x) = Pr(A)$.
- \item If $\Omega$ is the space, then $Pr(\Omega) = 1$ and there is the empty set, where: $Pr(\emptyset) = 0$.
- \item If $A$ and $B$ are two events with no intersection ($A \cap B = \emptyset$), we have that $Pr(A \cup B) = Pr(A) + Pr(B)$.
- \end{enumerate} \\ \\ \\ \\
- \underline{\textbf {Logic Symbols}} \\ \\
- \begin{itemize}
- \item If we want to say P AND Q, we write: $ P \land Q$.
- \item If we want to say P OR Q, we write: $ P \lor Q$.
- \item If we want to say NOT Q, we write: $ \lnot Q$.
- \item If we want to say P IMPLIES Q, we write: $ P \implies Q$.
- \item If we want to say P IMPLIES Q AND Q IMPLIES P: \\
- \[
- P \iff Q
- \]
- \item If $f$ is continuous $\therefore$ \\
- $ \forall a, b$, with $f(a) > 0 \land f(b) < 0, \exists \rho \in [a,b]$ with:
- $f(\rho) = 0.$ This is the Bolzano theorem.
- \end{itemize} \\ \\ \\ \\
- \emph{Multiple integrals reminder: }:
- $ \int \int \cdots \int f(x,y, \ldots, z) \, dx \, dy \, \ldots \,dz = \ldots$
- \\ \\ \\
- \underline{\textbf {Product}} \\ \\
- \[
- \log (\prod _{i=1}^n x_i) = \sum _{i=1}^n \log (x_i)
- \] \\ \\ \\
- Now, we gonna show the \textbf{Newton's identity} about polynomials of the form:
- $(x+1)^n$. Let's go: \\
- \[
- (a+b)^n = \sum _{k=0}^n \binom{n}{k} a^k b^{n-k}
- \] \\ \\ \\
- \underline{\textbf {Abstract Algebra}} \\ \\
- $
- \kappa =
- \begin{pmatrix}
- 1 & 2 & 3 \\
- 4 & 5 & 6 \\
- 7 & 8 & 9 \\
- \end{pmatrix}$, \text{ }
- $
- \sigma =
- \begin{pmatrix}
- -1 & -2 & -3 \\
- -4 & -5 & -6 \\
- -7 & -8 & -9 \\
- \end{pmatrix}
- $ \\ \\ \\
- $
- \kappa + \sigma =
- \begin{pmatrix}
- 0 & 0 & 0 \\
- 0 & 0 & 0 \\
- 0 & 0 & 0 \\
- \end{pmatrix} = 0
- $ \\ \\ \\
- \textit{\textbf{Reminder about limits (with underset): }} \\ \\
- Instead of writing this: $ \lim _{x \to \infty} f(x) = 0$, we can write the following: \\
- \[
- f(x) \underset{x \to \infty}{\longrightarrow} 0
- \] \\ \\ \\
- \end{document}
Add Comment
Please, Sign In to add comment