makispaiktis

Document 2 - Basics (5-6)

Sep 11th, 2021 (edited)
284
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
Latex 5.70 KB | None | 0 0
  1. \documentclass{article}
  2. \usepackage[utf8]{inputenc}
  3. \usepackage{amsmath}
  4. \usepackage{amssymb}
  5. \usepackage{esvect}
  6.  
  7. \title{Document 2 - Basics}
  8. \author{Thomas Boufikos}
  9. \date{September 2021}
  10.  
  11. \begin{document}
  12.  
  13. \maketitle
  14. \section{Calculus notation} \\ \\
  15. One example of a polynomial is: $ f(x) = a_nx^n + a_{n-1}x^{n-1} + \ldots + a_1x + a_0$. \\
  16. One example of exponentials is: $ g(x) = c_1e^{r_1x} + c_2e^{r_2x}$. \\
  17. Don't forget the basic identity: \\
  18. \[
  19. \sin^2x + \cos^2x = 1 \implies \sin x = \pm \sqrt{1 - \cos^2x}
  20. \] \\ \\ \\
  21. \underline{\textbf {Limits notation}} \\
  22. \[
  23. \begin{align*}
  24.    \lim _{x \to 0} \frac{x^2 + 1}{x^2 - 1} = 1 \\
  25.     \lim _{x \to \infty} \frac{x^2 + 1}{x^2 - 1} = 1
  26. \end{align*}
  27. \] \\ \\
  28. If $ \lim _{x \to a} f(x) = M $ and $ \lim _{x \to a} g(x) = M $ and we also know that: \\
  29. $ f(x) \leq h(x) \leq g(x)$, then: \\
  30. \[
  31.    \lim _{x \to a} h(x) = M
  32. \] \\ \\ \\
  33. \underline{\textbf {Summation notation}} \\ \\
  34. We know that this sum diverges: $ \sum _{n=1}^{\infty} \frac{1}{n} = \infty $, while: \\
  35. \[
  36.    \sum _{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}
  37. \] \\
  38. converges to a real number. \\ \\
  39. \[
  40.    \sum _{n=0}^N \sum _{m=0}^N a_n a_m= \left( \sum _{n=0}^N a_n \right) ^2
  41. \] \\ \\ \\
  42. \underline{\textbf {Integrals notation}} \\ \\
  43. \[
  44. \int _{-\infty}^{\infty} f(x) \, dx = \lim _{x \to \infty} f(x) -  \lim _{x \to -\infty} f(x) \\
  45. \]
  46. If f is the derivative of F, then: $ \int_R f(x) \, dx = F(x) $ \\ \\
  47. Volume = $ \iiint _D f(x,y,z) \, dx \, dy \, dz$. \\ \\
  48.  
  49. Now, we are gonna see the vertical bar: \\
  50. \[
  51.    \int _a^b f(x) \, dx = F(x) \bigg\vert _a^b
  52. \] \\
  53. In inline notation, we have: $ \int _a^b f(x) \, dx = F(x) \big\vert _a^b $. \\ \\ \\
  54. If a function $ f = f(x,y) $ has these 2 variables $x$ and $y$, then we can define: \\
  55. \begin{center}
  56. $ \frac{\partial f}{\partial x} $ and $ \frac{\partial f}{\partial x} $
  57. \end{center}. \\ \\ \\
  58. \textbf\textit{{Example: }} $f(x,y) = x^2 + 2xy + e^{2y}$, then: \\
  59. \[
  60. \begin{align}
  61.    \frac{\partial f}{\partial x} = 2x + 2y \\
  62.    \frac{\partial f}{\partial y} = 2y + 2e^{2y}
  63. \end{align}
  64. \] \\ \\
  65. \underline{\textbf {More derivatives}} \\ \\
  66. If $ f(x) = x^3 $, then $ f'(x) = 3x^2, f''(x) = 6x$. \\
  67. If f is a time variable-based function $f(t)$, then we can do this: \\
  68. \[
  69. \begin{align}
  70.    f(t) = \sin t + 2t \\
  71.    \dot{f}(t) = \cos t + 2 \\
  72.    \ddot{f}(t) = - \sin t
  73. \end{align}
  74. \] \\ \\ \\
  75. \underline{\textbf {Vectors (esvect package)}} \\ \\
  76. \[
  77.    \vv{r}(t) = \langle x(t), y(t), z(t) \rangle = \langle \sin t, \cos t, t \rangle
  78. \]
  79. \[
  80.    \dot{\vv{r}}(t) = \langle x'(t), y'(t), z'(t) \rangle = \langle \cos t, -\sin t, 1 \rangle
  81. \] \\ \\
  82. Now, the last thing to do is to remember the Faraday's Law of Injuction: \\
  83. \[
  84. \begin{align}
  85.    \vv{\nabla} \times \vv{E} = - \frac{\partial \vv{B}}{\partial t} \\
  86.    \oint \vv{E} \cdot d\vv{S} = \frac{d\Phi_B}{dt}
  87. \end{align}
  88. \] \\ \\ \\ \\
  89. \section{Miscellaneous notation} \\ \\
  90. \underline{\textbf {Roots}} \\ \\
  91. $ \sqrt{144} = 12 $, $ \sqrt{a} + \sqrt{b} > \sqrt{a+b} $ \\
  92. $ \sqrt{\frac{x}{y}} = \frac{\sqrt{x}}{\sqrt{y}} $ \\
  93. $ \sqrt[n]{a} = a^{\frac{1}{n}} $, for every n. \\ \\ \\
  94. \underline{\textbf {The quadratic formula: }}
  95. If $ ax^2 + bx + c = 0$, then solutions:   $x = \frac{-b \pm \sqrt{\Delta}}{2a}$, where: \\
  96. \[
  97.    \Delta = b^2 - 4ac
  98. \] \\ \\ \\ \\
  99. \underline{\textbf {Set Relationships}} \\ \\
  100. When A is subset of B, we write: $ A \subset B $ and the probabilities go on: \\
  101. \[
  102.    Pr(A) < Pr(B)
  103. \] \\
  104. But if $ A \supseteq B $, then it must be: $ Pr(A) \geq Pr(B) $. \\ \\ \\
  105. \underline{\textbf {Probability rules}} \\ \\
  106. \begin{enumerate}
  107.    \item If $A$ is a set of the space $\Omega$, then we know that if an event $x \in A$
  108.    exists in our set, its possibility follows the rule: $Pr(x) = Pr(A)$.
  109.    \item If $\Omega$ is the space, then $Pr(\Omega) = 1$ and there is the empty set, where: $Pr(\emptyset) = 0$.
  110.    \item If $A$ and $B$ are two events with no intersection ($A \cap B = \emptyset$), we have that $Pr(A \cup B) = Pr(A) + Pr(B)$.
  111. \end{enumerate} \\ \\ \\ \\
  112. \underline{\textbf {Logic Symbols}} \\ \\
  113. \begin{itemize}
  114.    \item If we want to say P AND Q, we write: $ P \land Q$.
  115.    \item If we want to say P OR Q, we write: $ P \lor Q$.
  116.    \item If we want to say  NOT Q, we write: $ \lnot Q$.
  117.    \item If we want to say P IMPLIES Q, we write: $ P \implies Q$.
  118.    \item If we want to say P IMPLIES Q AND Q IMPLIES P: \\
  119.    \[
  120.        P \iff Q
  121.    \]
  122.    \item If $f$ is continuous $\therefore$ \\
  123.    $ \forall  a, b$, with $f(a) > 0 \land f(b) < 0, \exists \rho \in [a,b]$ with:
  124.    $f(\rho) = 0.$ This is the Bolzano theorem.
  125. \end{itemize} \\ \\ \\ \\
  126. \emph{Multiple integrals reminder: }:
  127. $ \int \int \cdots \int f(x,y, \ldots, z) \, dx \, dy \, \ldots \,dz = \ldots$
  128. \\ \\ \\
  129. \underline{\textbf {Product}} \\ \\
  130. \[
  131.    \log (\prod _{i=1}^n x_i) = \sum _{i=1}^n \log (x_i)
  132. \] \\ \\ \\
  133.  
  134. Now, we gonna show the \textbf{Newton's identity} about polynomials of the form:
  135. $(x+1)^n$. Let's go: \\
  136. \[
  137.  (a+b)^n = \sum _{k=0}^n \binom{n}{k} a^k b^{n-k}
  138. \] \\ \\ \\
  139. \underline{\textbf {Abstract Algebra}} \\ \\
  140. $
  141. \kappa =
  142. \begin{pmatrix}
  143.    1 & 2 & 3 \\
  144.    4 & 5 & 6 \\
  145.    7 & 8 & 9 \\
  146. \end{pmatrix}$, \text{    }
  147. $
  148. \sigma =
  149. \begin{pmatrix}
  150.    -1 & -2 & -3 \\
  151.    -4 & -5 & -6 \\
  152.    -7 & -8 & -9 \\
  153. \end{pmatrix}
  154. $ \\ \\ \\
  155. $
  156. \kappa + \sigma =
  157. \begin{pmatrix}
  158.    0 & 0 & 0 \\
  159.    0 & 0 & 0 \\
  160.    0 & 0 & 0 \\
  161. \end{pmatrix} = 0
  162. $ \\ \\ \\
  163. \textit{\textbf{Reminder about limits (with underset): }} \\ \\
  164. Instead of writing this: $ \lim _{x \to \infty} f(x) = 0$, we can write the following: \\
  165. \[
  166.    f(x) \underset{x \to \infty}{\longrightarrow} 0
  167. \] \\ \\ \\
  168.  
  169.  
  170.  
  171.  
  172. \end{document}
  173.  
Add Comment
Please, Sign In to add comment