Advertisement
Sax

Incertidumbre 01

Sax
Jan 17th, 2016
367
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
Latex 7.05 KB | None | 0 0
  1. \documentclass[titlepage, letterpaper]{article}
  2. \usepackage[utf8]{inputenc}
  3. \usepackage{fancyhdr}
  4. \usepackage{amsmath}
  5. \usepackage{extramarks}
  6. \usepackage{enumitem}
  7.  
  8. \topmargin=-0.45in
  9. \evensidemargin=0in
  10. \oddsidemargin=0in
  11. \textwidth=6.5in
  12. \textheight=9.0in
  13. \headsep=0.25in
  14.  
  15.  
  16. %
  17. % You should change this things~
  18. %
  19.  
  20. \newcommand{\mahteacher}{Dr. Leonardo Garrido}
  21. \newcommand{\mahclass}{Sistemas de Incertidumbre}
  22. \newcommand{\mahtitle}{Tarea 01}
  23. \newcommand{\mahdate}{20 de enero de 2016}
  24. \newcommand{\spacepls}{\vspace{5mm}}
  25.  
  26. %
  27. % Header markings
  28. %
  29.  
  30. \pagestyle{fancy}
  31. \lhead{1170065 - Xavier Sánchez}
  32. \chead{}
  33. \rhead{}
  34. \lfoot{}
  35. \rfoot{}
  36.  
  37.  
  38. \renewcommand\headrulewidth{0.4pt}
  39. \renewcommand\footrulewidth{0.4pt}
  40.  
  41. \setlength\parindent{0pt}
  42.  
  43.  
  44. %
  45. % Create Problem Sections (stolen directly from jdavis/latex-homework-template @ github!)
  46. %
  47.  
  48. \newcommand{\enterProblemHeader}[1]{
  49.    \nobreak\extramarks{}{Problem \arabic{#1} continued on next page\ldots}\nobreak{}
  50.    \nobreak\extramarks{Problem \arabic{#1} (continued)}{Problem \arabic{#1} continued on next page\ldots}\nobreak{}
  51. }
  52.  
  53. \newcommand{\exitProblemHeader}[1]{
  54.    \nobreak\extramarks{Problem \arabic{#1} (continued)}{Problem \arabic{#1} continued on next page\ldots}\nobreak{}
  55.    \stepcounter{#1}
  56.    \nobreak\extramarks{Problem \arabic{#1}}{}\nobreak{}
  57. }
  58.  
  59. \setcounter{secnumdepth}{0}
  60. \newcounter{partCounter}
  61. \newcounter{homeworkProblemCounter}
  62. \setcounter{homeworkProblemCounter}{1}
  63. \nobreak\extramarks{Ejercicio \arabic{homeworkProblemCounter}}{}\nobreak{}
  64.  
  65. % Alias for the Solution section header
  66. \newcommand{\solution}{\textbf{\large Solución}}
  67.  
  68. %
  69. % Homework Problem Environment
  70. %
  71. % This environment takes an optional argument. When given, it will adjust the
  72. % problem counter. This is useful for when the problems given for your
  73. % assignment aren't sequential. See the last 3 problems of this template for an
  74. % example.
  75. %
  76. \newenvironment{homeworkProblem}[1][-1]{
  77.    \ifnum#1>0
  78.        \setcounter{homeworkProblemCounter}{#1}
  79.    \fi
  80.    \section{Ejercicio \arabic{homeworkProblemCounter}}
  81.    \setcounter{partCounter}{1}
  82.    \enterProblemHeader{homeworkProblemCounter}
  83. }{
  84.    \exitProblemHeader{homeworkProblemCounter}
  85. }
  86.  
  87.  
  88. %
  89. % My actual info
  90. %
  91.  
  92. \title{
  93.    \vspace{1in}
  94.    \textbf{Tecnológico de Monterrey} \\
  95.    \vspace{0.5in}
  96.    \textmd{\mahclass} \\
  97.    \large{\textit{\mahteacher}} \\
  98.    \vspace{0.5in}
  99.    \textsc{\mahtitle}
  100.    \author{01170065  - MIT \\
  101.    Xavier Fernando Cuauhtémoc Sánchez Díaz \\
  102.    \texttt{xavier.sanchezdz@gmail.com}}
  103.    \date{\mahdate}
  104. }
  105.  
  106. \begin{document}
  107.  
  108. \begin{titlepage}
  109. \maketitle
  110. \end{titlepage}
  111.  
  112. %
  113. % Actual document starts here~
  114. %
  115.  
  116. \begin{homeworkProblem}
  117.    \textit{Corresponde al ejercicio \textbf{13.7} del libro.}
  118.    
  119.    \spacepls
  120.    
  121.    Consider the set of all possible five-card poker hands dealt fairly from a standard deck
  122.    of fifty-two cards.
  123.    
  124.    \begin{enumerate}[label= \textbf{\alph*)}]
  125.        \item How many atomic events are there in the joint probability distribution (i.e., how many
  126.    five-card hands are there)?
  127.        \item What is the probability of each atomic event?
  128.        \item What is the probability of being dealt a royal straight flush? Four of a kind?
  129.    \end{enumerate}
  130.    
  131.    \spacepls
  132.    \solution
  133.    \spacepls
  134.    
  135.    \textbf{a)} El número de combinaciones de 5 cartas posibles en un mazo de 52 cartas está dado por:
  136.    
  137.    \[52 \times 51 \times 50 \times 49 \times 48 = 311875200\]
  138.    
  139.    Esto es considerando que recibir \textbf{A, K, Q, J, 10} es un evento distinto de recibir \textbf{10, J, Q, K, A} por el orden. Si lo que importa son las "manos" distintas, entonces el número de combinaciones hay que dividirlo entre 5!, que es el número de "maneras distintas" en las que podemos recibir una sola combinación:
  140.    
  141.    \[\dfrac{311875200}{5!} = \dfrac{311875200}{120} = 2598960\]
  142.    
  143.    \textbf{b)} Cada evento es equiprobable, por lo que la probabilidad de cada uno es \(\dfrac{1}{311875200}\) si el orden importase, y  \(\dfrac{1}{2598960}\)  si lo que importa es la mano como tal.
  144.    
  145.    \spacepls
  146.    
  147.    \textbf{\(c_1\))} La probabilidad de obtener una flor imperial \textbf{del mismo palo} está dada por:
  148.    
  149.    \[P(A \wedge K \wedge Q \wedge J \wedge 10) = \dfrac{1}{52} \times \dfrac{1}{51} \times \dfrac{1}{50} \times \dfrac{1}{49} \times \dfrac{1}{48} = \dfrac{1}{2598960}\]
  150.    
  151.    Como hay 4 palos en la baraja, la probabilidad de obtener una flor imperial de cualquier palo es de \(\dfrac{4}{2598960} = \dfrac{1}{649740}\).
  152.    
  153.    \spacepls
  154.    
  155.    \textbf{\(c_2)\)} La probabilidad de obtener un poker (\textit{four of a kind}) está dada por:
  156.    
  157.    \[\dfrac{13 \times 4 \times 12}{2598960} = \dfrac{624}{2598960} = \dfrac{1}{4165}\]
  158.    
  159.    donde el 13 es cualquier carta de la baraja, 4 el número de cartas del mismo tipo que se precisa tener, y 12 posibilidades de las cartas restantes, todo en la primera mano.
  160.    
  161. \end{homeworkProblem}
  162.  
  163. \pagebreak
  164.  
  165. \begin{homeworkProblem}
  166. \textit{Corresponde al ejercicio \textbf{13.8} del libro.}
  167.  
  168. \spacepls
  169.  
  170. Given the full joint distribution shown in Figure 13.3, calculate the following:
  171.  
  172. \begin{enumerate}[label={\alph*)}]
  173.     \item \textbf{P}(\textit{toothache})
  174.     \item \textbf{P}(\textit{Cavity})
  175.     \item \textbf{P}(\textit{Toothache \(\mid\) cavity})
  176.     \item \textbf{P}(\textit{Cavity \(\mid\) toothache \(\vee\) catch})
  177. \end{enumerate}
  178.  
  179. \begin{table}[h]
  180.    \centering
  181.    \begin{tabular}{l|l|l|l|l|}
  182.           & \multicolumn{2}{l|}{toothache} & \multicolumn{2}{l|}{\(\neg\) toothache} \\ \hline
  183.           & catch & \(\neg\) catch & catch & \(\neg\) catch \\\hline
  184.    cavity & 0.108 & 0.012 & 0.072 & 0.008 \\
  185.    \(\neg\) cavity & 0.016 & 0.064 & 0.144 & 0.576 \\
  186.    \end{tabular}
  187. \end{table}
  188.  
  189. \spacepls
  190. \solution
  191. \spacepls
  192.  
  193. \textbf{a)} \( \textbf{P}(toothache) = 0.108 + 0.016 + 0.012 + 0.064 = 0.2 \)
  194.  
  195. \spacepls
  196.  
  197. \textbf{b)} \(\textbf{P}(Cavity) = \langle 0.108 + 0.012 + 0.072 + 0.008, 0.016 + 0.064 + 0.144 + 0.576 \rangle  = \langle 0.2 , 0.8 \rangle\)
  198.  
  199. \spacepls
  200.  
  201. \textbf{c)} \(\textbf{P}(Toothache \mid cavity) = \dfrac{P(toothache \wedge cavity)}{P(cavity)}\), y \(P(cavity) = 0.108 + 0.012 + 0.072 + 0.008 = 0.2)\). Por tanto:
  202.  
  203. \[ \textbf{P}(Toothache \mid cavity) = \left \langle \dfrac{0.108, 0.012}{0.2} , \dfrac{0.072, 0.008}{0.2} \right \rangle  = \langle 0.6, 0.4 \rangle\]
  204.  
  205. \spacepls
  206.  
  207. \textbf{d)} \(\textbf{P}(Cavity \mid toothache \vee catch) = \left \langle \dfrac{P(cavity \wedge toothache \vee catch)}{P(toothache \vee catch)} , \dfrac{P(\neg cavity \wedge toothache \vee catch)}{P(toothache \vee catch)} \right \rangle\), y
  208.  
  209. \spacepls
  210.  
  211. \(P(toothache \vee catch) = 0.108 + 0.012 + 0.016 + 0.064 + 0.072 + 0.144 = 0.416\), entonces:
  212.  
  213. \[ \textbf{P}(Cavity \mid toothache \vee catch) = \left \langle \dfrac{0.108 + 0.012 + 0.072}{0.416} , \dfrac{0.016 + 0.064 + 0.144}{0.416} \right \rangle \approx \langle 0.4615, 0.5384 \rangle \]
  214.  
  215.  
  216. \end{homeworkProblem}
  217.  
  218. \end{document}
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement