Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- #!/usr/bin/python
- #
- # aes.py: implements AES - Advanced Encryption Standard
- # from the SlowAES project, http://code.google.com/p/slowaes/
- #
- # Copyright (c) 2008 Josh Davis ( http://www.josh-davis.org ),
- # Alex Martelli ( http://www.aleax.it )
- #
- # Ported from C code written by Laurent Haan ( http://www.progressive-coding.com )
- #
- # Licensed under the Apache License, Version 2.0
- # http://www.apache.org/licenses/
- #
- import os
- import sys
- import math
- def append_PKCS7_padding(s):
- """return s padded to a multiple of 16-bytes by PKCS7 padding"""
- numpads = 16 - (len(s)%16)
- return s + numpads*chr(numpads)
- def strip_PKCS7_padding(s):
- """return s stripped of PKCS7 padding"""
- if len(s)%16 or not s:
- raise ValueError("String of len %d can't be PCKS7-padded" % len(s))
- numpads = ord(s[-1])
- if numpads > 16:
- raise ValueError("String ending with %r can't be PCKS7-padded" % s[-1])
- return s[:-numpads]
- class AES(object):
- # valid key sizes
- keySize = dict(SIZE_128=16, SIZE_192=24, SIZE_256=32)
- # Rijndael S-box
- sbox = [0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67,
- 0x2b, 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59,
- 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7,
- 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1,
- 0x71, 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05,
- 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83,
- 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29,
- 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b,
- 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, 0xd0, 0xef, 0xaa,
- 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c,
- 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc,
- 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec,
- 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19,
- 0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee,
- 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49,
- 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
- 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4,
- 0xea, 0x65, 0x7a, 0xae, 0x08, 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6,
- 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 0x70,
- 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9,
- 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e,
- 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, 0x8c, 0xa1,
- 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0,
- 0x54, 0xbb, 0x16]
- # Rijndael Inverted S-box
- rsbox = [0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3,
- 0x9e, 0x81, 0xf3, 0xd7, 0xfb , 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f,
- 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb , 0x54,
- 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b,
- 0x42, 0xfa, 0xc3, 0x4e , 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24,
- 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25 , 0x72, 0xf8,
- 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d,
- 0x65, 0xb6, 0x92 , 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda,
- 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84 , 0x90, 0xd8, 0xab,
- 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3,
- 0x45, 0x06 , 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1,
- 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b , 0x3a, 0x91, 0x11, 0x41,
- 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6,
- 0x73 , 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9,
- 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e , 0x47, 0xf1, 0x1a, 0x71, 0x1d,
- 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b ,
- 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0,
- 0xfe, 0x78, 0xcd, 0x5a, 0xf4 , 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07,
- 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f , 0x60,
- 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f,
- 0x93, 0xc9, 0x9c, 0xef , 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5,
- 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61 , 0x17, 0x2b,
- 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55,
- 0x21, 0x0c, 0x7d]
- def getSBoxValue(self,num):
- """Retrieves a given S-Box Value"""
- return self.sbox[num]
- def getSBoxInvert(self,num):
- """Retrieves a given Inverted S-Box Value"""
- return self.rsbox[num]
- def rotate(self, word):
- """ Rijndael's key schedule rotate operation.
- Rotate a word eight bits to the left: eg, rotate(1d2c3a4f) == 2c3a4f1d
- Word is an char list of size 4 (32 bits overall).
- """
- return word[1:] + word[:1]
- # Rijndael Rcon
- Rcon = [0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36,
- 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97,
- 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72,
- 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66,
- 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04,
- 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d,
- 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3,
- 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61,
- 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a,
- 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40,
- 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc,
- 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5,
- 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a,
- 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d,
- 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c,
- 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35,
- 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4,
- 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc,
- 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08,
- 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a,
- 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d,
- 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2,
- 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74,
- 0xe8, 0xcb ]
- def getRconValue(self, num):
- """Retrieves a given Rcon Value"""
- return self.Rcon[num]
- def core(self, word, iteration):
- """Key schedule core."""
- # rotate the 32-bit word 8 bits to the left
- word = self.rotate(word)
- # apply S-Box substitution on all 4 parts of the 32-bit word
- for i in range(4):
- word[i] = self.getSBoxValue(word[i])
- # XOR the output of the rcon operation with i to the first part
- # (leftmost) only
- word[0] = word[0] ^ self.getRconValue(iteration)
- return word
- def expandKey(self, key, size, expandedKeySize):
- """Rijndael's key expansion.
- Expands an 128,192,256 key into an 176,208,240 bytes key
- expandedKey is a char list of large enough size,
- key is the non-expanded key.
- """
- # current expanded keySize, in bytes
- currentSize = 0
- rconIteration = 1
- expandedKey = [0] * expandedKeySize
- # set the 16, 24, 32 bytes of the expanded key to the input key
- for j in range(size):
- expandedKey[j] = key[j]
- currentSize += size
- while currentSize < expandedKeySize:
- # assign the previous 4 bytes to the temporary value t
- t = expandedKey[currentSize-4:currentSize]
- # every 16,24,32 bytes we apply the core schedule to t
- # and increment rconIteration afterwards
- if currentSize % size == 0:
- t = self.core(t, rconIteration)
- rconIteration += 1
- # For 256-bit keys, we add an extra sbox to the calculation
- if size == self.keySize["SIZE_256"] and ((currentSize % size) == 16):
- for l in range(4): t[l] = self.getSBoxValue(t[l])
- # We XOR t with the four-byte block 16,24,32 bytes before the new
- # expanded key. This becomes the next four bytes in the expanded
- # key.
- for m in range(4):
- expandedKey[currentSize] = expandedKey[currentSize - size] ^ \
- t[m]
- currentSize += 1
- return expandedKey
- def addRoundKey(self, state, roundKey):
- """Adds (XORs) the round key to the state."""
- for i in range(16):
- state[i] ^= roundKey[i]
- return state
- def createRoundKey(self, expandedKey, roundKeyPointer):
- """Create a round key.
- Creates a round key from the given expanded key and the
- position within the expanded key.
- """
- roundKey = [0] * 16
- for i in range(4):
- for j in range(4):
- roundKey[j*4+i] = expandedKey[roundKeyPointer + i*4 + j]
- return roundKey
- def galois_multiplication(self, a, b):
- """Galois multiplication of 8 bit characters a and b."""
- p = 0
- for counter in range(8):
- if b & 1: p ^= a
- hi_bit_set = a & 0x80
- a <<= 1
- # keep a 8 bit
- a &= 0xFF
- if hi_bit_set:
- a ^= 0x1b
- b >>= 1
- return p
- #
- # substitute all the values from the state with the value in the SBox
- # using the state value as index for the SBox
- #
- def subBytes(self, state, isInv):
- if isInv: getter = self.getSBoxInvert
- else: getter = self.getSBoxValue
- for i in range(16): state[i] = getter(state[i])
- return state
- # iterate over the 4 rows and call shiftRow() with that row
- def shiftRows(self, state, isInv):
- for i in range(4):
- state = self.shiftRow(state, i*4, i, isInv)
- return state
- # each iteration shifts the row to the left by 1
- def shiftRow(self, state, statePointer, nbr, isInv):
- for i in range(nbr):
- if isInv:
- state[statePointer:statePointer+4] = \
- state[statePointer+3:statePointer+4] + \
- state[statePointer:statePointer+3]
- else:
- state[statePointer:statePointer+4] = \
- state[statePointer+1:statePointer+4] + \
- state[statePointer:statePointer+1]
- return state
- # galois multiplication of the 4x4 matrix
- def mixColumns(self, state, isInv):
- # iterate over the 4 columns
- for i in range(4):
- # construct one column by slicing over the 4 rows
- column = state[i:i+16:4]
- # apply the mixColumn on one column
- column = self.mixColumn(column, isInv)
- # put the values back into the state
- state[i:i+16:4] = column
- return state
- # galois multiplication of 1 column of the 4x4 matrix
- def mixColumn(self, column, isInv):
- if isInv: mult = [14, 9, 13, 11]
- else: mult = [2, 1, 1, 3]
- cpy = list(column)
- g = self.galois_multiplication
- column[0] = g(cpy[0], mult[0]) ^ g(cpy[3], mult[1]) ^ \
- g(cpy[2], mult[2]) ^ g(cpy[1], mult[3])
- column[1] = g(cpy[1], mult[0]) ^ g(cpy[0], mult[1]) ^ \
- g(cpy[3], mult[2]) ^ g(cpy[2], mult[3])
- column[2] = g(cpy[2], mult[0]) ^ g(cpy[1], mult[1]) ^ \
- g(cpy[0], mult[2]) ^ g(cpy[3], mult[3])
- column[3] = g(cpy[3], mult[0]) ^ g(cpy[2], mult[1]) ^ \
- g(cpy[1], mult[2]) ^ g(cpy[0], mult[3])
- return column
- # applies the 4 operations of the forward round in sequence
- def aes_round(self, state, roundKey):
- state = self.subBytes(state, False)
- state = self.shiftRows(state, False)
- state = self.mixColumns(state, False)
- state = self.addRoundKey(state, roundKey)
- return state
- # applies the 4 operations of the inverse round in sequence
- def aes_invRound(self, state, roundKey):
- state = self.shiftRows(state, True)
- state = self.subBytes(state, True)
- state = self.addRoundKey(state, roundKey)
- state = self.mixColumns(state, True)
- return state
- # Perform the initial operations, the standard round, and the final
- # operations of the forward aes, creating a round key for each round
- def aes_main(self, state, expandedKey, nbrRounds):
- state = self.addRoundKey(state, self.createRoundKey(expandedKey, 0))
- i = 1
- while i < nbrRounds:
- state = self.aes_round(state,
- self.createRoundKey(expandedKey, 16*i))
- i += 1
- state = self.subBytes(state, False)
- state = self.shiftRows(state, False)
- state = self.addRoundKey(state,
- self.createRoundKey(expandedKey, 16*nbrRounds))
- return state
- # Perform the initial operations, the standard round, and the final
- # operations of the inverse aes, creating a round key for each round
- def aes_invMain(self, state, expandedKey, nbrRounds):
- state = self.addRoundKey(state,
- self.createRoundKey(expandedKey, 16*nbrRounds))
- i = nbrRounds - 1
- while i > 0:
- state = self.aes_invRound(state,
- self.createRoundKey(expandedKey, 16*i))
- i -= 1
- state = self.shiftRows(state, True)
- state = self.subBytes(state, True)
- state = self.addRoundKey(state, self.createRoundKey(expandedKey, 0))
- return state
- # encrypts a 128 bit input block against the given key of size specified
- def encrypt(self, iput, key, size):
- output = [0] * 16
- # the number of rounds
- nbrRounds = 0
- # the 128 bit block to encode
- block = [0] * 16
- # set the number of rounds
- if size == self.keySize["SIZE_128"]: nbrRounds = 10
- elif size == self.keySize["SIZE_192"]: nbrRounds = 12
- elif size == self.keySize["SIZE_256"]: nbrRounds = 14
- else: return None
- # the expanded keySize
- expandedKeySize = 16*(nbrRounds+1)
- # Set the block values, for the block:
- # a0,0 a0,1 a0,2 a0,3
- # a1,0 a1,1 a1,2 a1,3
- # a2,0 a2,1 a2,2 a2,3
- # a3,0 a3,1 a3,2 a3,3
- # the mapping order is a0,0 a1,0 a2,0 a3,0 a0,1 a1,1 ... a2,3 a3,3
- #
- # iterate over the columns
- for i in range(4):
- # iterate over the rows
- for j in range(4):
- block[(i+(j*4))] = iput[(i*4)+j]
- # expand the key into an 176, 208, 240 bytes key
- # the expanded key
- expandedKey = self.expandKey(key, size, expandedKeySize)
- # encrypt the block using the expandedKey
- block = self.aes_main(block, expandedKey, nbrRounds)
- # unmap the block again into the output
- for k in range(4):
- # iterate over the rows
- for l in range(4):
- output[(k*4)+l] = block[(k+(l*4))]
- return output
- # decrypts a 128 bit input block against the given key of size specified
- def decrypt(self, iput, key, size):
- output = [0] * 16
- # the number of rounds
- nbrRounds = 0
- # the 128 bit block to decode
- block = [0] * 16
- # set the number of rounds
- if size == self.keySize["SIZE_128"]: nbrRounds = 10
- elif size == self.keySize["SIZE_192"]: nbrRounds = 12
- elif size == self.keySize["SIZE_256"]: nbrRounds = 14
- else: return None
- # the expanded keySize
- expandedKeySize = 16*(nbrRounds+1)
- # Set the block values, for the block:
- # a0,0 a0,1 a0,2 a0,3
- # a1,0 a1,1 a1,2 a1,3
- # a2,0 a2,1 a2,2 a2,3
- # a3,0 a3,1 a3,2 a3,3
- # the mapping order is a0,0 a1,0 a2,0 a3,0 a0,1 a1,1 ... a2,3 a3,3
- # iterate over the columns
- for i in range(4):
- # iterate over the rows
- for j in range(4):
- block[(i+(j*4))] = iput[(i*4)+j]
- # expand the key into an 176, 208, 240 bytes key
- expandedKey = self.expandKey(key, size, expandedKeySize)
- # decrypt the block using the expandedKey
- block = self.aes_invMain(block, expandedKey, nbrRounds)
- # unmap the block again into the output
- for k in range(4):
- # iterate over the rows
- for l in range(4):
- output[(k*4)+l] = block[(k+(l*4))]
- return output
- class AESModeOfOperation(object):
- aes = AES()
- # structure of supported modes of operation
- modeOfOperation = dict(OFB=0, CFB=1, CBC=2)
- # converts a 16 character string into a number array
- def convertString(self, string, start, end, mode):
- if end - start > 16: end = start + 16
- if mode == self.modeOfOperation["CBC"]: ar = [0] * 16
- else: ar = []
- i = start
- j = 0
- while len(ar) < end - start:
- ar.append(0)
- while i < end:
- ar[j] = ord(string[i])
- j += 1
- i += 1
- return ar
- # Mode of Operation Encryption
- # stringIn - Input String
- # mode - mode of type modeOfOperation
- # hexKey - a hex key of the bit length size
- # size - the bit length of the key
- # hexIV - the 128 bit hex Initilization Vector
- def encrypt(self, stringIn, mode, key, size, IV):
- if len(key) % size:
- return None
- if len(IV) % 16:
- return None
- # the AES input/output
- plaintext = []
- iput = [0] * 16
- output = []
- ciphertext = [0] * 16
- # the output cipher string
- cipherOut = []
- # char firstRound
- firstRound = True
- if stringIn != None:
- for j in range(int(math.ceil(float(len(stringIn))/16))):
- start = j*16
- end = j*16+16
- if end > len(stringIn):
- end = len(stringIn)
- plaintext = self.convertString(stringIn, start, end, mode)
- # print 'PT@%s:%s' % (j, plaintext)
- if mode == self.modeOfOperation["CFB"]:
- if firstRound:
- output = self.aes.encrypt(IV, key, size)
- firstRound = False
- else:
- output = self.aes.encrypt(iput, key, size)
- for i in range(16):
- if len(plaintext)-1 < i:
- ciphertext[i] = 0 ^ output[i]
- elif len(output)-1 < i:
- ciphertext[i] = plaintext[i] ^ 0
- elif len(plaintext)-1 < i and len(output) < i:
- ciphertext[i] = 0 ^ 0
- else:
- ciphertext[i] = plaintext[i] ^ output[i]
- for k in range(end-start):
- cipherOut.append(ciphertext[k])
- iput = ciphertext
- elif mode == self.modeOfOperation["OFB"]:
- if firstRound:
- output = self.aes.encrypt(IV, key, size)
- firstRound = False
- else:
- output = self.aes.encrypt(iput, key, size)
- for i in range(16):
- if len(plaintext)-1 < i:
- ciphertext[i] = 0 ^ output[i]
- elif len(output)-1 < i:
- ciphertext[i] = plaintext[i] ^ 0
- elif len(plaintext)-1 < i and len(output) < i:
- ciphertext[i] = 0 ^ 0
- else:
- ciphertext[i] = plaintext[i] ^ output[i]
- for k in range(end-start):
- cipherOut.append(ciphertext[k])
- iput = output
- elif mode == self.modeOfOperation["CBC"]:
- for i in range(16):
- if firstRound:
- iput[i] = plaintext[i] ^ IV[i]
- else:
- iput[i] = plaintext[i] ^ ciphertext[i]
- # print 'IP@%s:%s' % (j, iput)
- firstRound = False
- ciphertext = self.aes.encrypt(iput, key, size)
- # always 16 bytes because of the padding for CBC
- for k in range(16):
- cipherOut.append(ciphertext[k])
- return mode, len(stringIn), cipherOut
- # Mode of Operation Decryption
- # cipherIn - Encrypted String
- # originalsize - The unencrypted string length - required for CBC
- # mode - mode of type modeOfOperation
- # key - a number array of the bit length size
- # size - the bit length of the key
- # IV - the 128 bit number array Initilization Vector
- def decrypt(self, cipherIn, originalsize, mode, key, size, IV):
- # cipherIn = unescCtrlChars(cipherIn)
- if len(key) % size:
- return None
- if len(IV) % 16:
- return None
- # the AES input/output
- ciphertext = []
- iput = []
- output = []
- plaintext = [0] * 16
- # the output plain text string
- stringOut = ''
- # char firstRound
- firstRound = True
- if cipherIn != None:
- for j in range(int(math.ceil(float(len(cipherIn))/16))):
- start = j*16
- end = j*16+16
- if j*16+16 > len(cipherIn):
- end = len(cipherIn)
- ciphertext = cipherIn[start:end]
- if mode == self.modeOfOperation["CFB"]:
- if firstRound:
- output = self.aes.encrypt(IV, key, size)
- firstRound = False
- else:
- output = self.aes.encrypt(iput, key, size)
- for i in range(16):
- if len(output)-1 < i:
- plaintext[i] = 0 ^ ciphertext[i]
- elif len(ciphertext)-1 < i:
- plaintext[i] = output[i] ^ 0
- elif len(output)-1 < i and len(ciphertext) < i:
- plaintext[i] = 0 ^ 0
- else:
- plaintext[i] = output[i] ^ ciphertext[i]
- for k in range(end-start):
- stringOut += chr(plaintext[k])
- iput = ciphertext
- elif mode == self.modeOfOperation["OFB"]:
- if firstRound:
- output = self.aes.encrypt(IV, key, size)
- firstRound = False
- else:
- output = self.aes.encrypt(iput, key, size)
- for i in range(16):
- if len(output)-1 < i:
- plaintext[i] = 0 ^ ciphertext[i]
- elif len(ciphertext)-1 < i:
- plaintext[i] = output[i] ^ 0
- elif len(output)-1 < i and len(ciphertext) < i:
- plaintext[i] = 0 ^ 0
- else:
- plaintext[i] = output[i] ^ ciphertext[i]
- for k in range(end-start):
- stringOut += chr(plaintext[k])
- iput = output
- elif mode == self.modeOfOperation["CBC"]:
- output = self.aes.decrypt(ciphertext, key, size)
- for i in range(16):
- if firstRound:
- plaintext[i] = IV[i] ^ output[i]
- else:
- plaintext[i] = iput[i] ^ output[i]
- firstRound = False
- if originalsize is not None and originalsize < end:
- for k in range(originalsize-start):
- stringOut += chr(plaintext[k])
- else:
- for k in range(end-start):
- stringOut += chr(plaintext[k])
- iput = ciphertext
- return stringOut
- def encryptData(key, data, mode=AESModeOfOperation.modeOfOperation["CBC"]):
- """encrypt `data` using `key`
- `key` should be a string of bytes.
- returned cipher is a string of bytes prepended with the initialization
- vector.
- """
- key = map(ord, key)
- if mode == AESModeOfOperation.modeOfOperation["CBC"]:
- data = append_PKCS7_padding(data)
- keysize = len(key)
- assert keysize in AES.keySize.values(), 'invalid key size: %s' % keysize
- # create a new iv using random data
- iv = [ord(i) for i in os.urandom(16)]
- moo = AESModeOfOperation()
- (mode, length, ciph) = moo.encrypt(data, mode, key, keysize, iv)
- # With padding, the original length does not need to be known. It's a bad
- # idea to store the original message length.
- # prepend the iv.
- return ''.join(map(chr, iv)) + ''.join(map(chr, ciph))
- def decryptData(key, data, mode=AESModeOfOperation.modeOfOperation["CBC"]):
- """decrypt `data` using `key`
- `key` should be a string of bytes.
- `data` should have the initialization vector prepended as a string of
- ordinal values.
- """
- key = map(ord, key)
- keysize = len(key)
- assert keysize in AES.keySize.values(), 'invalid key size: %s' % keysize
- # iv is first 16 bytes
- iv = map(ord, data[:16])
- data = map(ord, data[16:])
- moo = AESModeOfOperation()
- decr = moo.decrypt(data, None, mode, key, keysize, iv)
- if mode == AESModeOfOperation.modeOfOperation["CBC"]:
- decr = strip_PKCS7_padding(decr)
- return decr
- def generateRandomKey(keysize):
- """Generates a key from random data of length `keysize`.
- The returned key is a string of bytes.
- """
- if keysize not in (16, 24, 32):
- emsg = 'Invalid keysize, %s. Should be one of (16, 24, 32).'
- raise ValueError, emsg % keysize
- return os.urandom(keysize)
- if __name__ == "__main__":
- moo = AESModeOfOperation()
- cleartext = "This is a test!"
- cypherkey = [143,194,34,208,145,203,230,143,177,246,97,206,145,92,255,84]
- iv = [103,35,148,239,76,213,47,118,255,222,123,176,106,134,98,92]
- mode, orig_len, ciph = moo.encrypt(cleartext, moo.modeOfOperation["CBC"],
- cypherkey, moo.aes.keySize["SIZE_128"], iv)
- print 'm=%s, ol=%s (%s), ciph=%s' % (mode, orig_len, len(cleartext), ciph)
- decr = moo.decrypt(ciph, orig_len, mode, cypherkey,
- moo.aes.keySize["SIZE_128"], iv)
- print decr
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement