Advertisement
opexxx

aes.py

Nov 7th, 2014
290
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
Python 27.68 KB | None | 0 0
  1. #!/usr/bin/python
  2. #
  3. # aes.py: implements AES - Advanced Encryption Standard
  4. # from the SlowAES project, http://code.google.com/p/slowaes/
  5. #
  6. # Copyright (c) 2008    Josh Davis ( http://www.josh-davis.org ),
  7. #           Alex Martelli ( http://www.aleax.it )
  8. #
  9. # Ported from C code written by Laurent Haan ( http://www.progressive-coding.com )
  10. #
  11. # Licensed under the Apache License, Version 2.0
  12. # http://www.apache.org/licenses/
  13. #
  14. import os
  15. import sys
  16. import math
  17.  
  18. def append_PKCS7_padding(s):
  19.     """return s padded to a multiple of 16-bytes by PKCS7 padding"""
  20.     numpads = 16 - (len(s)%16)
  21.     return s + numpads*chr(numpads)
  22.  
  23. def strip_PKCS7_padding(s):
  24.     """return s stripped of PKCS7 padding"""
  25.     if len(s)%16 or not s:
  26.         raise ValueError("String of len %d can't be PCKS7-padded" % len(s))
  27.     numpads = ord(s[-1])
  28.     if numpads > 16:
  29.         raise ValueError("String ending with %r can't be PCKS7-padded" % s[-1])
  30.     return s[:-numpads]
  31.  
  32. class AES(object):
  33.     # valid key sizes
  34.     keySize = dict(SIZE_128=16, SIZE_192=24, SIZE_256=32)
  35.  
  36.     # Rijndael S-box
  37.     sbox =  [0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67,
  38.             0x2b, 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59,
  39.             0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7,
  40.             0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1,
  41.             0x71, 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05,
  42.             0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83,
  43.             0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29,
  44.             0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b,
  45.             0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, 0xd0, 0xef, 0xaa,
  46.             0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c,
  47.             0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc,
  48.             0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec,
  49.             0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19,
  50.             0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee,
  51.             0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49,
  52.             0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
  53.             0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4,
  54.             0xea, 0x65, 0x7a, 0xae, 0x08, 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6,
  55.             0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 0x70,
  56.             0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9,
  57.             0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e,
  58.             0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, 0x8c, 0xa1,
  59.             0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0,
  60.             0x54, 0xbb, 0x16]
  61.  
  62.     # Rijndael Inverted S-box
  63.     rsbox = [0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3,
  64.             0x9e, 0x81, 0xf3, 0xd7, 0xfb , 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f,
  65.             0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb , 0x54,
  66.             0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b,
  67.             0x42, 0xfa, 0xc3, 0x4e , 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24,
  68.             0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25 , 0x72, 0xf8,
  69.             0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d,
  70.             0x65, 0xb6, 0x92 , 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda,
  71.             0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84 , 0x90, 0xd8, 0xab,
  72.             0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3,
  73.             0x45, 0x06 , 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1,
  74.             0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b , 0x3a, 0x91, 0x11, 0x41,
  75.             0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6,
  76.             0x73 , 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9,
  77.             0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e , 0x47, 0xf1, 0x1a, 0x71, 0x1d,
  78.             0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b ,
  79.             0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0,
  80.             0xfe, 0x78, 0xcd, 0x5a, 0xf4 , 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07,
  81.             0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f , 0x60,
  82.             0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f,
  83.             0x93, 0xc9, 0x9c, 0xef , 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5,
  84.             0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61 , 0x17, 0x2b,
  85.             0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55,
  86.             0x21, 0x0c, 0x7d]
  87.  
  88.     def getSBoxValue(self,num):
  89.         """Retrieves a given S-Box Value"""
  90.         return self.sbox[num]
  91.  
  92.     def getSBoxInvert(self,num):
  93.         """Retrieves a given Inverted S-Box Value"""
  94.         return self.rsbox[num]
  95.  
  96.     def rotate(self, word):
  97.         """ Rijndael's key schedule rotate operation.
  98.  
  99.        Rotate a word eight bits to the left: eg, rotate(1d2c3a4f) == 2c3a4f1d
  100.        Word is an char list of size 4 (32 bits overall).
  101.        """
  102.         return word[1:] + word[:1]
  103.  
  104.     # Rijndael Rcon
  105.     Rcon = [0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36,
  106.             0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97,
  107.             0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72,
  108.             0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66,
  109.             0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04,
  110.             0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d,
  111.             0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3,
  112.             0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61,
  113.             0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a,
  114.             0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40,
  115.             0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc,
  116.             0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5,
  117.             0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a,
  118.             0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d,
  119.             0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c,
  120.             0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35,
  121.             0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4,
  122.             0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc,
  123.             0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08,
  124.             0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a,
  125.             0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d,
  126.             0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2,
  127.             0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74,
  128.             0xe8, 0xcb ]
  129.  
  130.     def getRconValue(self, num):
  131.         """Retrieves a given Rcon Value"""
  132.         return self.Rcon[num]
  133.  
  134.     def core(self, word, iteration):
  135.         """Key schedule core."""
  136.         # rotate the 32-bit word 8 bits to the left
  137.         word = self.rotate(word)
  138.         # apply S-Box substitution on all 4 parts of the 32-bit word
  139.         for i in range(4):
  140.             word[i] = self.getSBoxValue(word[i])
  141.         # XOR the output of the rcon operation with i to the first part
  142.         # (leftmost) only
  143.         word[0] = word[0] ^ self.getRconValue(iteration)
  144.         return word
  145.  
  146.     def expandKey(self, key, size, expandedKeySize):
  147.         """Rijndael's key expansion.
  148.  
  149.        Expands an 128,192,256 key into an 176,208,240 bytes key
  150.  
  151.        expandedKey is a char list of large enough size,
  152.        key is the non-expanded key.
  153.        """
  154.         # current expanded keySize, in bytes
  155.         currentSize = 0
  156.         rconIteration = 1
  157.         expandedKey = [0] * expandedKeySize
  158.  
  159.         # set the 16, 24, 32 bytes of the expanded key to the input key
  160.         for j in range(size):
  161.             expandedKey[j] = key[j]
  162.         currentSize += size
  163.  
  164.         while currentSize < expandedKeySize:
  165.             # assign the previous 4 bytes to the temporary value t
  166.             t = expandedKey[currentSize-4:currentSize]
  167.  
  168.             # every 16,24,32 bytes we apply the core schedule to t
  169.             # and increment rconIteration afterwards
  170.             if currentSize % size == 0:
  171.                 t = self.core(t, rconIteration)
  172.                 rconIteration += 1
  173.             # For 256-bit keys, we add an extra sbox to the calculation
  174.             if size == self.keySize["SIZE_256"] and ((currentSize % size) == 16):
  175.                 for l in range(4): t[l] = self.getSBoxValue(t[l])
  176.  
  177.             # We XOR t with the four-byte block 16,24,32 bytes before the new
  178.             # expanded key.  This becomes the next four bytes in the expanded
  179.             # key.
  180.             for m in range(4):
  181.                 expandedKey[currentSize] = expandedKey[currentSize - size] ^ \
  182.                         t[m]
  183.                 currentSize += 1
  184.  
  185.         return expandedKey
  186.  
  187.     def addRoundKey(self, state, roundKey):
  188.         """Adds (XORs) the round key to the state."""
  189.         for i in range(16):
  190.             state[i] ^= roundKey[i]
  191.         return state
  192.  
  193.     def createRoundKey(self, expandedKey, roundKeyPointer):
  194.         """Create a round key.
  195.        Creates a round key from the given expanded key and the
  196.        position within the expanded key.
  197.        """
  198.         roundKey = [0] * 16
  199.         for i in range(4):
  200.             for j in range(4):
  201.                 roundKey[j*4+i] = expandedKey[roundKeyPointer + i*4 + j]
  202.         return roundKey
  203.  
  204.     def galois_multiplication(self, a, b):
  205.         """Galois multiplication of 8 bit characters a and b."""
  206.         p = 0
  207.         for counter in range(8):
  208.             if b & 1: p ^= a
  209.             hi_bit_set = a & 0x80
  210.             a <<= 1
  211.             # keep a 8 bit
  212.             a &= 0xFF
  213.             if hi_bit_set:
  214.                 a ^= 0x1b
  215.             b >>= 1
  216.         return p
  217.  
  218.     #
  219.     # substitute all the values from the state with the value in the SBox
  220.     # using the state value as index for the SBox
  221.     #
  222.     def subBytes(self, state, isInv):
  223.         if isInv: getter = self.getSBoxInvert
  224.         else: getter = self.getSBoxValue
  225.         for i in range(16): state[i] = getter(state[i])
  226.         return state
  227.  
  228.     # iterate over the 4 rows and call shiftRow() with that row
  229.     def shiftRows(self, state, isInv):
  230.         for i in range(4):
  231.             state = self.shiftRow(state, i*4, i, isInv)
  232.         return state
  233.  
  234.     # each iteration shifts the row to the left by 1
  235.     def shiftRow(self, state, statePointer, nbr, isInv):
  236.         for i in range(nbr):
  237.             if isInv:
  238.                 state[statePointer:statePointer+4] = \
  239.                         state[statePointer+3:statePointer+4] + \
  240.                         state[statePointer:statePointer+3]
  241.             else:
  242.                 state[statePointer:statePointer+4] = \
  243.                         state[statePointer+1:statePointer+4] + \
  244.                         state[statePointer:statePointer+1]
  245.         return state
  246.  
  247.     # galois multiplication of the 4x4 matrix
  248.     def mixColumns(self, state, isInv):
  249.         # iterate over the 4 columns
  250.         for i in range(4):
  251.             # construct one column by slicing over the 4 rows
  252.             column = state[i:i+16:4]
  253.             # apply the mixColumn on one column
  254.             column = self.mixColumn(column, isInv)
  255.             # put the values back into the state
  256.             state[i:i+16:4] = column
  257.  
  258.         return state
  259.  
  260.     # galois multiplication of 1 column of the 4x4 matrix
  261.     def mixColumn(self, column, isInv):
  262.         if isInv: mult = [14, 9, 13, 11]
  263.         else: mult = [2, 1, 1, 3]
  264.         cpy = list(column)
  265.         g = self.galois_multiplication
  266.  
  267.         column[0] = g(cpy[0], mult[0]) ^ g(cpy[3], mult[1]) ^ \
  268.                     g(cpy[2], mult[2]) ^ g(cpy[1], mult[3])
  269.         column[1] = g(cpy[1], mult[0]) ^ g(cpy[0], mult[1]) ^ \
  270.                     g(cpy[3], mult[2]) ^ g(cpy[2], mult[3])
  271.         column[2] = g(cpy[2], mult[0]) ^ g(cpy[1], mult[1]) ^ \
  272.                     g(cpy[0], mult[2]) ^ g(cpy[3], mult[3])
  273.         column[3] = g(cpy[3], mult[0]) ^ g(cpy[2], mult[1]) ^ \
  274.                     g(cpy[1], mult[2]) ^ g(cpy[0], mult[3])
  275.         return column
  276.  
  277.     # applies the 4 operations of the forward round in sequence
  278.     def aes_round(self, state, roundKey):
  279.         state = self.subBytes(state, False)
  280.         state = self.shiftRows(state, False)
  281.         state = self.mixColumns(state, False)
  282.         state = self.addRoundKey(state, roundKey)
  283.         return state
  284.  
  285.     # applies the 4 operations of the inverse round in sequence
  286.     def aes_invRound(self, state, roundKey):
  287.         state = self.shiftRows(state, True)
  288.         state = self.subBytes(state, True)
  289.         state = self.addRoundKey(state, roundKey)
  290.         state = self.mixColumns(state, True)
  291.         return state
  292.  
  293.     # Perform the initial operations, the standard round, and the final
  294.     # operations of the forward aes, creating a round key for each round
  295.     def aes_main(self, state, expandedKey, nbrRounds):
  296.         state = self.addRoundKey(state, self.createRoundKey(expandedKey, 0))
  297.         i = 1
  298.         while i < nbrRounds:
  299.             state = self.aes_round(state,
  300.                                    self.createRoundKey(expandedKey, 16*i))
  301.             i += 1
  302.         state = self.subBytes(state, False)
  303.         state = self.shiftRows(state, False)
  304.         state = self.addRoundKey(state,
  305.                                  self.createRoundKey(expandedKey, 16*nbrRounds))
  306.         return state
  307.  
  308.     # Perform the initial operations, the standard round, and the final
  309.     # operations of the inverse aes, creating a round key for each round
  310.     def aes_invMain(self, state, expandedKey, nbrRounds):
  311.         state = self.addRoundKey(state,
  312.                                  self.createRoundKey(expandedKey, 16*nbrRounds))
  313.         i = nbrRounds - 1
  314.         while i > 0:
  315.             state = self.aes_invRound(state,
  316.                                       self.createRoundKey(expandedKey, 16*i))
  317.             i -= 1
  318.         state = self.shiftRows(state, True)
  319.         state = self.subBytes(state, True)
  320.         state = self.addRoundKey(state, self.createRoundKey(expandedKey, 0))
  321.         return state
  322.  
  323.     # encrypts a 128 bit input block against the given key of size specified
  324.     def encrypt(self, iput, key, size):
  325.         output = [0] * 16
  326.         # the number of rounds
  327.         nbrRounds = 0
  328.         # the 128 bit block to encode
  329.         block = [0] * 16
  330.         # set the number of rounds
  331.         if size == self.keySize["SIZE_128"]: nbrRounds = 10
  332.         elif size == self.keySize["SIZE_192"]: nbrRounds = 12
  333.         elif size == self.keySize["SIZE_256"]: nbrRounds = 14
  334.         else: return None
  335.  
  336.         # the expanded keySize
  337.         expandedKeySize = 16*(nbrRounds+1)
  338.  
  339.         # Set the block values, for the block:
  340.         # a0,0 a0,1 a0,2 a0,3
  341.         # a1,0 a1,1 a1,2 a1,3
  342.         # a2,0 a2,1 a2,2 a2,3
  343.         # a3,0 a3,1 a3,2 a3,3
  344.         # the mapping order is a0,0 a1,0 a2,0 a3,0 a0,1 a1,1 ... a2,3 a3,3
  345.         #
  346.         # iterate over the columns
  347.         for i in range(4):
  348.             # iterate over the rows
  349.             for j in range(4):
  350.                 block[(i+(j*4))] = iput[(i*4)+j]
  351.  
  352.         # expand the key into an 176, 208, 240 bytes key
  353.         # the expanded key
  354.         expandedKey = self.expandKey(key, size, expandedKeySize)
  355.  
  356.         # encrypt the block using the expandedKey
  357.         block = self.aes_main(block, expandedKey, nbrRounds)
  358.  
  359.         # unmap the block again into the output
  360.         for k in range(4):
  361.             # iterate over the rows
  362.             for l in range(4):
  363.                 output[(k*4)+l] = block[(k+(l*4))]
  364.         return output
  365.  
  366.     # decrypts a 128 bit input block against the given key of size specified
  367.     def decrypt(self, iput, key, size):
  368.         output = [0] * 16
  369.         # the number of rounds
  370.         nbrRounds = 0
  371.         # the 128 bit block to decode
  372.         block = [0] * 16
  373.         # set the number of rounds
  374.         if size == self.keySize["SIZE_128"]: nbrRounds = 10
  375.         elif size == self.keySize["SIZE_192"]: nbrRounds = 12
  376.         elif size == self.keySize["SIZE_256"]: nbrRounds = 14
  377.         else: return None
  378.  
  379.         # the expanded keySize
  380.         expandedKeySize = 16*(nbrRounds+1)
  381.  
  382.         # Set the block values, for the block:
  383.         # a0,0 a0,1 a0,2 a0,3
  384.         # a1,0 a1,1 a1,2 a1,3
  385.         # a2,0 a2,1 a2,2 a2,3
  386.         # a3,0 a3,1 a3,2 a3,3
  387.         # the mapping order is a0,0 a1,0 a2,0 a3,0 a0,1 a1,1 ... a2,3 a3,3
  388.  
  389.         # iterate over the columns
  390.         for i in range(4):
  391.             # iterate over the rows
  392.             for j in range(4):
  393.                 block[(i+(j*4))] = iput[(i*4)+j]
  394.         # expand the key into an 176, 208, 240 bytes key
  395.         expandedKey = self.expandKey(key, size, expandedKeySize)
  396.         # decrypt the block using the expandedKey
  397.         block = self.aes_invMain(block, expandedKey, nbrRounds)
  398.         # unmap the block again into the output
  399.         for k in range(4):
  400.             # iterate over the rows
  401.             for l in range(4):
  402.                 output[(k*4)+l] = block[(k+(l*4))]
  403.         return output
  404.  
  405.  
  406. class AESModeOfOperation(object):
  407.  
  408.     aes = AES()
  409.  
  410.     # structure of supported modes of operation
  411.     modeOfOperation = dict(OFB=0, CFB=1, CBC=2)
  412.  
  413.     # converts a 16 character string into a number array
  414.     def convertString(self, string, start, end, mode):
  415.         if end - start > 16: end = start + 16
  416.         if mode == self.modeOfOperation["CBC"]: ar = [0] * 16
  417.         else: ar = []
  418.  
  419.         i = start
  420.         j = 0
  421.         while len(ar) < end - start:
  422.             ar.append(0)
  423.         while i < end:
  424.             ar[j] = ord(string[i])
  425.             j += 1
  426.             i += 1
  427.         return ar
  428.  
  429.     # Mode of Operation Encryption
  430.     # stringIn - Input String
  431.     # mode - mode of type modeOfOperation
  432.     # hexKey - a hex key of the bit length size
  433.     # size - the bit length of the key
  434.     # hexIV - the 128 bit hex Initilization Vector
  435.     def encrypt(self, stringIn, mode, key, size, IV):
  436.         if len(key) % size:
  437.             return None
  438.         if len(IV) % 16:
  439.             return None
  440.         # the AES input/output
  441.         plaintext = []
  442.         iput = [0] * 16
  443.         output = []
  444.         ciphertext = [0] * 16
  445.         # the output cipher string
  446.         cipherOut = []
  447.         # char firstRound
  448.         firstRound = True
  449.         if stringIn != None:
  450.             for j in range(int(math.ceil(float(len(stringIn))/16))):
  451.                 start = j*16
  452.                 end = j*16+16
  453.                 if  end > len(stringIn):
  454.                     end = len(stringIn)
  455.                 plaintext = self.convertString(stringIn, start, end, mode)
  456.                 # print 'PT@%s:%s' % (j, plaintext)
  457.                 if mode == self.modeOfOperation["CFB"]:
  458.                     if firstRound:
  459.                         output = self.aes.encrypt(IV, key, size)
  460.                         firstRound = False
  461.                     else:
  462.                         output = self.aes.encrypt(iput, key, size)
  463.                     for i in range(16):
  464.                         if len(plaintext)-1 < i:
  465.                             ciphertext[i] = 0 ^ output[i]
  466.                         elif len(output)-1 < i:
  467.                             ciphertext[i] = plaintext[i] ^ 0
  468.                         elif len(plaintext)-1 < i and len(output) < i:
  469.                             ciphertext[i] = 0 ^ 0
  470.                         else:
  471.                             ciphertext[i] = plaintext[i] ^ output[i]
  472.                     for k in range(end-start):
  473.                         cipherOut.append(ciphertext[k])
  474.                     iput = ciphertext
  475.                 elif mode == self.modeOfOperation["OFB"]:
  476.                     if firstRound:
  477.                         output = self.aes.encrypt(IV, key, size)
  478.                         firstRound = False
  479.                     else:
  480.                         output = self.aes.encrypt(iput, key, size)
  481.                     for i in range(16):
  482.                         if len(plaintext)-1 < i:
  483.                             ciphertext[i] = 0 ^ output[i]
  484.                         elif len(output)-1 < i:
  485.                             ciphertext[i] = plaintext[i] ^ 0
  486.                         elif len(plaintext)-1 < i and len(output) < i:
  487.                             ciphertext[i] = 0 ^ 0
  488.                         else:
  489.                             ciphertext[i] = plaintext[i] ^ output[i]
  490.                     for k in range(end-start):
  491.                         cipherOut.append(ciphertext[k])
  492.                     iput = output
  493.                 elif mode == self.modeOfOperation["CBC"]:
  494.                     for i in range(16):
  495.                         if firstRound:
  496.                             iput[i] =  plaintext[i] ^ IV[i]
  497.                         else:
  498.                             iput[i] =  plaintext[i] ^ ciphertext[i]
  499.                     # print 'IP@%s:%s' % (j, iput)
  500.                     firstRound = False
  501.                     ciphertext = self.aes.encrypt(iput, key, size)
  502.                     # always 16 bytes because of the padding for CBC
  503.                     for k in range(16):
  504.                         cipherOut.append(ciphertext[k])
  505.         return mode, len(stringIn), cipherOut
  506.  
  507.     # Mode of Operation Decryption
  508.     # cipherIn - Encrypted String
  509.     # originalsize - The unencrypted string length - required for CBC
  510.     # mode - mode of type modeOfOperation
  511.     # key - a number array of the bit length size
  512.     # size - the bit length of the key
  513.     # IV - the 128 bit number array Initilization Vector
  514.     def decrypt(self, cipherIn, originalsize, mode, key, size, IV):
  515.         # cipherIn = unescCtrlChars(cipherIn)
  516.         if len(key) % size:
  517.             return None
  518.         if len(IV) % 16:
  519.             return None
  520.         # the AES input/output
  521.         ciphertext = []
  522.         iput = []
  523.         output = []
  524.         plaintext = [0] * 16
  525.         # the output plain text string
  526.         stringOut = ''
  527.         # char firstRound
  528.         firstRound = True
  529.         if cipherIn != None:
  530.             for j in range(int(math.ceil(float(len(cipherIn))/16))):
  531.                 start = j*16
  532.                 end = j*16+16
  533.                 if j*16+16 > len(cipherIn):
  534.                     end = len(cipherIn)
  535.                 ciphertext = cipherIn[start:end]
  536.                 if mode == self.modeOfOperation["CFB"]:
  537.                     if firstRound:
  538.                         output = self.aes.encrypt(IV, key, size)
  539.                         firstRound = False
  540.                     else:
  541.                         output = self.aes.encrypt(iput, key, size)
  542.                     for i in range(16):
  543.                         if len(output)-1 < i:
  544.                             plaintext[i] = 0 ^ ciphertext[i]
  545.                         elif len(ciphertext)-1 < i:
  546.                             plaintext[i] = output[i] ^ 0
  547.                         elif len(output)-1 < i and len(ciphertext) < i:
  548.                             plaintext[i] = 0 ^ 0
  549.                         else:
  550.                             plaintext[i] = output[i] ^ ciphertext[i]
  551.                     for k in range(end-start):
  552.                         stringOut += chr(plaintext[k])
  553.                     iput = ciphertext
  554.                 elif mode == self.modeOfOperation["OFB"]:
  555.                     if firstRound:
  556.                         output = self.aes.encrypt(IV, key, size)
  557.                         firstRound = False
  558.                     else:
  559.                         output = self.aes.encrypt(iput, key, size)
  560.                     for i in range(16):
  561.                         if len(output)-1 < i:
  562.                             plaintext[i] = 0 ^ ciphertext[i]
  563.                         elif len(ciphertext)-1 < i:
  564.                             plaintext[i] = output[i] ^ 0
  565.                         elif len(output)-1 < i and len(ciphertext) < i:
  566.                             plaintext[i] = 0 ^ 0
  567.                         else:
  568.                             plaintext[i] = output[i] ^ ciphertext[i]
  569.                     for k in range(end-start):
  570.                         stringOut += chr(plaintext[k])
  571.                     iput = output
  572.                 elif mode == self.modeOfOperation["CBC"]:
  573.                     output = self.aes.decrypt(ciphertext, key, size)
  574.                     for i in range(16):
  575.                         if firstRound:
  576.                             plaintext[i] = IV[i] ^ output[i]
  577.                         else:
  578.                             plaintext[i] = iput[i] ^ output[i]
  579.                     firstRound = False
  580.                     if originalsize is not None and originalsize < end:
  581.                         for k in range(originalsize-start):
  582.                             stringOut += chr(plaintext[k])
  583.                     else:
  584.                         for k in range(end-start):
  585.                             stringOut += chr(plaintext[k])
  586.                     iput = ciphertext
  587.         return stringOut
  588.  
  589.  
  590. def encryptData(key, data, mode=AESModeOfOperation.modeOfOperation["CBC"]):
  591.     """encrypt `data` using `key`
  592.  
  593.    `key` should be a string of bytes.
  594.  
  595.    returned cipher is a string of bytes prepended with the initialization
  596.    vector.
  597.  
  598.    """
  599.     key = map(ord, key)
  600.     if mode == AESModeOfOperation.modeOfOperation["CBC"]:
  601.         data = append_PKCS7_padding(data)
  602.     keysize = len(key)
  603.     assert keysize in AES.keySize.values(), 'invalid key size: %s' % keysize
  604.     # create a new iv using random data
  605.     iv = [ord(i) for i in os.urandom(16)]
  606.     moo = AESModeOfOperation()
  607.     (mode, length, ciph) = moo.encrypt(data, mode, key, keysize, iv)
  608.     # With padding, the original length does not need to be known. It's a bad
  609.     # idea to store the original message length.
  610.     # prepend the iv.
  611.     return ''.join(map(chr, iv)) + ''.join(map(chr, ciph))
  612.  
  613. def decryptData(key, data, mode=AESModeOfOperation.modeOfOperation["CBC"]):
  614.     """decrypt `data` using `key`
  615.  
  616.    `key` should be a string of bytes.
  617.  
  618.    `data` should have the initialization vector prepended as a string of
  619.    ordinal values.
  620.  
  621.    """
  622.  
  623.     key = map(ord, key)
  624.     keysize = len(key)
  625.     assert keysize in AES.keySize.values(), 'invalid key size: %s' % keysize
  626.     # iv is first 16 bytes
  627.     iv = map(ord, data[:16])
  628.     data = map(ord, data[16:])
  629.     moo = AESModeOfOperation()
  630.     decr = moo.decrypt(data, None, mode, key, keysize, iv)
  631.     if mode == AESModeOfOperation.modeOfOperation["CBC"]:
  632.         decr = strip_PKCS7_padding(decr)
  633.     return decr
  634.  
  635. def generateRandomKey(keysize):
  636.     """Generates a key from random data of length `keysize`.
  637.    
  638.    The returned key is a string of bytes.
  639.    
  640.    """
  641.     if keysize not in (16, 24, 32):
  642.         emsg = 'Invalid keysize, %s. Should be one of (16, 24, 32).'
  643.         raise ValueError, emsg % keysize
  644.     return os.urandom(keysize)
  645.  
  646. if __name__ == "__main__":
  647.     moo = AESModeOfOperation()
  648.     cleartext = "This is a test!"
  649.     cypherkey = [143,194,34,208,145,203,230,143,177,246,97,206,145,92,255,84]
  650.     iv = [103,35,148,239,76,213,47,118,255,222,123,176,106,134,98,92]
  651.     mode, orig_len, ciph = moo.encrypt(cleartext, moo.modeOfOperation["CBC"],
  652.             cypherkey, moo.aes.keySize["SIZE_128"], iv)
  653.     print 'm=%s, ol=%s (%s), ciph=%s' % (mode, orig_len, len(cleartext), ciph)
  654.     decr = moo.decrypt(ciph, orig_len, mode, cypherkey,
  655.             moo.aes.keySize["SIZE_128"], iv)
  656.     print decr
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement