Advertisement
trsp

0.1331 val_acc code

Jul 17th, 2023
121
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
Python 1.41 KB | Source Code | 0 0
  1. from tensorflow.keras.preprocessing.image import ImageDataGenerator
  2. from tensorflow.keras.layers import Conv2D, Flatten, Dense, AvgPool2D
  3. from tensorflow.keras.models import Sequential
  4.  
  5.  
  6. def load_train(path):
  7.     train_datagen = ImageDataGenerator(validation_split=0.25, rescale=1. / 255)
  8.  
  9.     train_datagen_flow = train_datagen.flow_from_directory(
  10.         path,
  11.         target_size=(150, 150),
  12.         batch_size=16,
  13.         class_mode='sparse',
  14.         subset='training',
  15.         seed=12345)
  16.     return train_datagen_flow
  17.  
  18.  
  19. def create_model(input_shape):
  20.     model = Sequential()
  21.     model.add(Conv2D(filters=6, kernel_size=(5, 5), padding='same',
  22.                      activation="relu", input_shape=input_shape))
  23.     model.add(AvgPool2D(pool_size=(2, 2)))
  24.     model.add(Flatten())
  25.     model.add(Dense(units=20, activation='relu'))
  26.     model.add(Dense(units=20, activation='softmax'))
  27.     model.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['acc'])
  28.  
  29.     return model
  30.  
  31.  
  32. def train_model(model, train_data, test_data, batch_size=None, epochs=5,
  33.                 steps_per_epoch=None, validation_steps=None):
  34.     model.fit(train_data,
  35.               validation_data=test_data,
  36.               batch_size=batch_size, epochs=epochs,
  37.               steps_per_epoch=steps_per_epoch,
  38.               validation_steps=validation_steps,
  39.               verbose=2, shuffle=True)
  40.  
  41.     return model
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement