Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- from tensorflow.keras.preprocessing.image import ImageDataGenerator
- from tensorflow.keras.layers import Conv2D, Flatten, Dense, AvgPool2D
- from tensorflow.keras.models import Sequential
- def load_train(path):
- train_datagen = ImageDataGenerator(validation_split=0.25, rescale=1. / 255)
- train_datagen_flow = train_datagen.flow_from_directory(
- path,
- target_size=(150, 150),
- batch_size=16,
- class_mode='sparse',
- subset='training',
- seed=12345)
- return train_datagen_flow
- def create_model(input_shape):
- model = Sequential()
- model.add(Conv2D(filters=6, kernel_size=(5, 5), padding='same',
- activation="relu", input_shape=input_shape))
- model.add(AvgPool2D(pool_size=(2, 2)))
- model.add(Flatten())
- model.add(Dense(units=20, activation='relu'))
- model.add(Dense(units=20, activation='softmax'))
- model.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['acc'])
- return model
- def train_model(model, train_data, test_data, batch_size=None, epochs=5,
- steps_per_epoch=None, validation_steps=None):
- model.fit(train_data,
- validation_data=test_data,
- batch_size=batch_size, epochs=epochs,
- steps_per_epoch=steps_per_epoch,
- validation_steps=validation_steps,
- verbose=2, shuffle=True)
- return model
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement