Advertisement
ProzacR

rez_Q2_Edita2013

Sep 15th, 2015
422
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 7.17 KB | None | 0 0
  1. #specifiskumo qsar:
  2. > library(cvq2)
  3. > #qsar_SUM_test_pred_values ~ qsarSUM$K[test]
  4. > x<-cbind(qsar_SUM_test_pred_values, qsarSUM$K[test])
  5. > colnames(x)[2]<-"y"
  6. > qsar_12_SUM_q2<-cvq2(x)
  7. > print(qsar_12_SUM_q2)
  8.  
  9. ---- CALL ----
  10. cvq2(modelData = x)
  11.  
  12. ---- RESULTS ----
  13.  
  14. -- MODEL CALIBRATION (linear regression)
  15. #Elements: 10
  16.  
  17. mean (observed): -4.2670
  18. mean (predicted): -4.2670
  19. rmse (nu = 0): 1.6795
  20. r^2: 0.5767
  21.  
  22. -- PREDICTION PERFORMANCE (cross validation)
  23. #Runs: 1
  24. #Groups: 10
  25. #Elements Training Set: 9
  26. #Elements Test Set: 1
  27.  
  28. mean (observed): -4.2670
  29. mean (predicted): -4.3131
  30. rmse (nu = 1): 2.1451
  31. q^2: 0.4966
  32. > #qsar_12_13_test_pred_values ~ qsar12_13$K[test]
  33. > x<-cbind(qsar_12_13_test_pred_values, qsar12_13$K[test])
  34. > colnames(x)[2]<-"y"
  35. > qsar_12_13_q2<-cvq2(x)
  36. > print(qsar_12_13_q2)
  37.  
  38. ---- CALL ----
  39. cvq2(modelData = x)
  40.  
  41. ---- RESULTS ----
  42.  
  43. -- MODEL CALIBRATION (linear regression)
  44. #Elements: 10
  45.  
  46. mean (observed): -1.3760
  47. mean (predicted): -1.3760
  48. rmse (nu = 0): 0.4300
  49. r^2: 0.7121
  50.  
  51. -- PREDICTION PERFORMANCE (cross validation)
  52. #Runs: 1
  53. #Groups: 10
  54. #Elements Training Set: 9
  55. #Elements Test Set: 1
  56.  
  57. mean (observed): -1.3760
  58. mean (predicted): -1.3248
  59. rmse (nu = 1): 0.5860
  60. q^2: 0.6102
  61. > x<-cbind(qsar_12_7_test_pred_values, qsar12_7$K[test])
  62. > colnames(x)[2]<-"y"
  63. > qsar_12_7_q2<-cvq2(x)
  64. > print(qsar_12_7_q2)
  65.  
  66. ---- CALL ----
  67. cvq2(modelData = x)
  68.  
  69. ---- RESULTS ----
  70.  
  71. -- MODEL CALIBRATION (linear regression)
  72. #Elements: 10
  73.  
  74. mean (observed): -0.9170
  75. mean (predicted): -0.9170
  76. rmse (nu = 0): 0.4796
  77. r^2: 0.4929
  78.  
  79. -- PREDICTION PERFORMANCE (cross validation)
  80. #Runs: 1
  81. #Groups: 10
  82. #Elements Training Set: 9
  83. #Elements Test Set: 1
  84.  
  85. mean (observed): -0.9170
  86. mean (predicted): -0.9298
  87. rmse (nu = 1): 0.6152
  88. q^2: 0.3918
  89. > x<-cbind(qsar_12_6_test_pred_values, qsar12_6$K[test])
  90. > colnames(x)[2]<-"y"
  91. > qsar_12_6_q2<-cvq2(x)
  92. > print(qsar_12_6_q2)
  93.  
  94. ---- CALL ----
  95. cvq2(modelData = x)
  96.  
  97. ---- RESULTS ----
  98.  
  99. -- MODEL CALIBRATION (linear regression)
  100. #Elements: 10
  101.  
  102. mean (observed): 0.5510
  103. mean (predicted): 0.5510
  104. rmse (nu = 0): 0.2692
  105. r^2: 0.4188
  106.  
  107. -- PREDICTION PERFORMANCE (cross validation)
  108. #Runs: 1
  109. #Groups: 10
  110. #Elements Training Set: 9
  111. #Elements Test Set: 1
  112.  
  113. mean (observed): 0.5510
  114. mean (predicted): 0.5326
  115. rmse (nu = 1): 0.3338
  116. q^2: 0.3485
  117. > x<-cbind(qsar_12_2_test_pred_values, qsar12_2$K[test])
  118. > colnames(x)[2]<-"y"
  119. > qsar_12_2_q2<-cvq2(x)
  120. > print(qsar_12_2_q2)
  121.  
  122. ---- CALL ----
  123. cvq2(modelData = x)
  124.  
  125. ---- RESULTS ----
  126.  
  127. -- MODEL CALIBRATION (linear regression)
  128. #Elements: 10
  129.  
  130. mean (observed): -1.3530
  131. mean (predicted): -1.3530
  132. rmse (nu = 0): 0.4083
  133. r^2: 0.5788
  134.  
  135. -- PREDICTION PERFORMANCE (cross validation)
  136. #Runs: 1
  137. #Groups: 10
  138. #Elements Training Set: 9
  139. #Elements Test Set: 1
  140.  
  141. mean (observed): -1.3530
  142. mean (predicted): -1.2966
  143. rmse (nu = 1): 0.6133
  144. q^2: 0.3071
  145. > x<-cbind(qsar_12_1_test_pred_values, qsar12_1$K[test])
  146. > colnames(x)[2]<-"y"
  147. > qsar_12_1_q2<-cvq2(x)
  148. > print(qsar_12_1_q2)
  149.  
  150. ---- CALL ----
  151. cvq2(modelData = x)
  152.  
  153. ---- RESULTS ----
  154.  
  155. -- MODEL CALIBRATION (linear regression)
  156. #Elements: 10
  157.  
  158. mean (observed): -1.1740
  159. mean (predicted): -1.1740
  160. rmse (nu = 0): 0.3822
  161. r^2: 0.7867
  162.  
  163. -- PREDICTION PERFORMANCE (cross validation)
  164. #Runs: 1
  165. #Groups: 10
  166. #Elements Training Set: 9
  167. #Elements Test Set: 1
  168.  
  169. mean (observed): -1.1740
  170. mean (predicted): -1.1523
  171. rmse (nu = 1): 0.4649
  172. q^2: 0.7700
  173.  
  174.  
  175. #is atskiru modeliu:
  176.  
  177.  
  178. > library(cvq2)
  179. > x<-cbind(CA12_1_sp, CA12_1_exprm)
  180. > colnames(x)[2]<-"y"
  181. > qsar_12_1_q2<-cvq2(x)
  182. > print(qsar_12_1_q2)
  183.  
  184. ---- CALL ----
  185. cvq2(modelData = x)
  186.  
  187. ---- RESULTS ----
  188.  
  189. -- MODEL CALIBRATION (linear regression)
  190. #Elements: 10
  191.  
  192. mean (observed): -1.1742
  193. mean (predicted): -1.1742
  194. rmse (nu = 0): 0.4437
  195. r^2: 0.7114
  196.  
  197. -- PREDICTION PERFORMANCE (cross validation)
  198. #Runs: 1
  199. #Groups: 10
  200. #Elements Training Set: 9
  201. #Elements Test Set: 1
  202.  
  203. mean (observed): -1.1742
  204. mean (predicted): -1.2306
  205. rmse (nu = 1): 0.5885
  206. q^2: 0.6299
  207. > x<-cbind(CA12_2_sp, CA12_2_exprm)
  208. > colnames(x)[2]<-"y"
  209. > qsar_12_2_q2<-cvq2(x)
  210. > print(qsar_12_2_q2)
  211.  
  212. ---- CALL ----
  213. cvq2(modelData = x)
  214.  
  215. ---- RESULTS ----
  216.  
  217. -- MODEL CALIBRATION (linear regression)
  218. #Elements: 10
  219.  
  220. mean (observed): -1.3528
  221. mean (predicted): -1.3528
  222. rmse (nu = 0): 0.5509
  223. r^2: 0.2316
  224.  
  225. -- PREDICTION PERFORMANCE (cross validation)
  226. #Runs: 1
  227. #Groups: 10
  228. #Elements Training Set: 9
  229. #Elements Test Set: 1
  230.  
  231. mean (observed): -1.3528
  232. mean (predicted): -1.3474
  233. rmse (nu = 1): 0.6524
  234. q^2: 0.2144
  235. > x<-cbind(CA12_6_sp, CA12_6_exprm)
  236. > colnames(x)[2]<-"y"
  237. > qsar_12_6_q2<-cvq2(x)
  238. > x
  239. CA12_6_sp y
  240. [1,] 0.40085651 0.2602451
  241. [2,] 0.86519246 1.1383461
  242. [3,] 0.82996789 0.5436340
  243. [4,] 0.78429634 0.5436340
  244. [5,] 0.31184019 0.2139666
  245. [6,] 0.65888150 0.5038341
  246. [7,] 0.46799993 0.9806948
  247. [8,] 0.48120229 0.9697760
  248. [9,] 0.07967699 0.3733971
  249. [10,] 0.58739670 0.0000000
  250. > print(qsar_12_6_q2)
  251.  
  252. ---- CALL ----
  253. cvq2(modelData = x)
  254.  
  255. ---- RESULTS ----
  256.  
  257. -- MODEL CALIBRATION (linear regression)
  258. #Elements: 10
  259.  
  260. mean (observed): 0.5528
  261. mean (predicted): 0.5528
  262. rmse (nu = 0): 0.3287
  263. r^2: 0.1291
  264.  
  265. -- PREDICTION PERFORMANCE (cross validation)
  266. #Runs: 1
  267. #Groups: 10
  268. #Elements Training Set: 9
  269. #Elements Test Set: 1
  270.  
  271. mean (observed): 0.552753
  272. mean (predicted): 0.543742
  273. rmse (nu = 1): 0.411300
  274. q^2: 0.005908
  275. > x<-cbind(CA12_7_sp, CA12_7_exprm)
  276. > colnames(x)[2]<-"y"
  277. > qsar_12_7_q2<-cvq2(x)
  278. > print(qsar_12_7_q2)
  279.  
  280. ---- CALL ----
  281. cvq2(modelData = x)
  282.  
  283. ---- RESULTS ----
  284.  
  285. -- MODEL CALIBRATION (linear regression)
  286. #Elements: 10
  287.  
  288. mean (observed): -0.9167
  289. mean (predicted): -0.9167
  290. rmse (nu = 0): 0.4787
  291. r^2: 0.4933
  292.  
  293. -- PREDICTION PERFORMANCE (cross validation)
  294. #Runs: 1
  295. #Groups: 10
  296. #Elements Training Set: 9
  297. #Elements Test Set: 1
  298.  
  299. mean (observed): -0.9167
  300. mean (predicted): -0.9308
  301. rmse (nu = 1): 0.6245
  302. q^2: 0.3714
  303. > x<-cbind(CA12_13_sp, CA12_13_exprm)
  304. > colnames(x)[2]<-"y"
  305. > qsar_12_13_q2<-cvq2(x)
  306. > print(qsar_12_13_q2)
  307.  
  308. ---- CALL ----
  309. cvq2(modelData = x)
  310.  
  311. ---- RESULTS ----
  312.  
  313. -- MODEL CALIBRATION (linear regression)
  314. #Elements: 10
  315.  
  316. mean (observed): -1.3761
  317. mean (predicted): -1.3761
  318. rmse (nu = 0): 0.4435
  319. r^2: 0.6936
  320.  
  321. -- PREDICTION PERFORMANCE (cross validation)
  322. #Runs: 1
  323. #Groups: 10
  324. #Elements Training Set: 9
  325. #Elements Test Set: 1
  326.  
  327. mean (observed): -1.3761
  328. mean (predicted): -1.3645
  329. rmse (nu = 1): 0.5460
  330. q^2: 0.6614
  331. > x<-cbind(CA12_SUM_sp, CA12_SUM_exprm)
  332. > colnames(x)[2]<-"y"
  333. > qsar_12_SUM_q2<-cvq2(x)
  334. > print(qsar_12_SUM_q2)
  335.  
  336. ---- CALL ----
  337. cvq2(modelData = x)
  338.  
  339. ---- RESULTS ----
  340.  
  341. -- MODEL CALIBRATION (linear regression)
  342. #Elements: 10
  343.  
  344. mean (observed): -4.2670
  345. mean (predicted): -4.2670
  346. rmse (nu = 0): 1.7739
  347. r^2: 0.5278
  348.  
  349. -- PREDICTION PERFORMANCE (cross validation)
  350. #Runs: 1
  351. #Groups: 10
  352. #Elements Training Set: 9
  353. #Elements Test Set: 1
  354.  
  355. mean (observed): -4.2670
  356. mean (predicted): -4.0944
  357. rmse (nu = 1): 2.3380
  358. q^2: 0.4021
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement