Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- #specifiskumo qsar:
- > library(cvq2)
- > #qsar_SUM_test_pred_values ~ qsarSUM$K[test]
- > x<-cbind(qsar_SUM_test_pred_values, qsarSUM$K[test])
- > colnames(x)[2]<-"y"
- > qsar_12_SUM_q2<-cvq2(x)
- > print(qsar_12_SUM_q2)
- ---- CALL ----
- cvq2(modelData = x)
- ---- RESULTS ----
- -- MODEL CALIBRATION (linear regression)
- #Elements: 10
- mean (observed): -4.2670
- mean (predicted): -4.2670
- rmse (nu = 0): 1.6795
- r^2: 0.5767
- -- PREDICTION PERFORMANCE (cross validation)
- #Runs: 1
- #Groups: 10
- #Elements Training Set: 9
- #Elements Test Set: 1
- mean (observed): -4.2670
- mean (predicted): -4.3131
- rmse (nu = 1): 2.1451
- q^2: 0.4966
- > #qsar_12_13_test_pred_values ~ qsar12_13$K[test]
- > x<-cbind(qsar_12_13_test_pred_values, qsar12_13$K[test])
- > colnames(x)[2]<-"y"
- > qsar_12_13_q2<-cvq2(x)
- > print(qsar_12_13_q2)
- ---- CALL ----
- cvq2(modelData = x)
- ---- RESULTS ----
- -- MODEL CALIBRATION (linear regression)
- #Elements: 10
- mean (observed): -1.3760
- mean (predicted): -1.3760
- rmse (nu = 0): 0.4300
- r^2: 0.7121
- -- PREDICTION PERFORMANCE (cross validation)
- #Runs: 1
- #Groups: 10
- #Elements Training Set: 9
- #Elements Test Set: 1
- mean (observed): -1.3760
- mean (predicted): -1.3248
- rmse (nu = 1): 0.5860
- q^2: 0.6102
- > x<-cbind(qsar_12_7_test_pred_values, qsar12_7$K[test])
- > colnames(x)[2]<-"y"
- > qsar_12_7_q2<-cvq2(x)
- > print(qsar_12_7_q2)
- ---- CALL ----
- cvq2(modelData = x)
- ---- RESULTS ----
- -- MODEL CALIBRATION (linear regression)
- #Elements: 10
- mean (observed): -0.9170
- mean (predicted): -0.9170
- rmse (nu = 0): 0.4796
- r^2: 0.4929
- -- PREDICTION PERFORMANCE (cross validation)
- #Runs: 1
- #Groups: 10
- #Elements Training Set: 9
- #Elements Test Set: 1
- mean (observed): -0.9170
- mean (predicted): -0.9298
- rmse (nu = 1): 0.6152
- q^2: 0.3918
- > x<-cbind(qsar_12_6_test_pred_values, qsar12_6$K[test])
- > colnames(x)[2]<-"y"
- > qsar_12_6_q2<-cvq2(x)
- > print(qsar_12_6_q2)
- ---- CALL ----
- cvq2(modelData = x)
- ---- RESULTS ----
- -- MODEL CALIBRATION (linear regression)
- #Elements: 10
- mean (observed): 0.5510
- mean (predicted): 0.5510
- rmse (nu = 0): 0.2692
- r^2: 0.4188
- -- PREDICTION PERFORMANCE (cross validation)
- #Runs: 1
- #Groups: 10
- #Elements Training Set: 9
- #Elements Test Set: 1
- mean (observed): 0.5510
- mean (predicted): 0.5326
- rmse (nu = 1): 0.3338
- q^2: 0.3485
- > x<-cbind(qsar_12_2_test_pred_values, qsar12_2$K[test])
- > colnames(x)[2]<-"y"
- > qsar_12_2_q2<-cvq2(x)
- > print(qsar_12_2_q2)
- ---- CALL ----
- cvq2(modelData = x)
- ---- RESULTS ----
- -- MODEL CALIBRATION (linear regression)
- #Elements: 10
- mean (observed): -1.3530
- mean (predicted): -1.3530
- rmse (nu = 0): 0.4083
- r^2: 0.5788
- -- PREDICTION PERFORMANCE (cross validation)
- #Runs: 1
- #Groups: 10
- #Elements Training Set: 9
- #Elements Test Set: 1
- mean (observed): -1.3530
- mean (predicted): -1.2966
- rmse (nu = 1): 0.6133
- q^2: 0.3071
- > x<-cbind(qsar_12_1_test_pred_values, qsar12_1$K[test])
- > colnames(x)[2]<-"y"
- > qsar_12_1_q2<-cvq2(x)
- > print(qsar_12_1_q2)
- ---- CALL ----
- cvq2(modelData = x)
- ---- RESULTS ----
- -- MODEL CALIBRATION (linear regression)
- #Elements: 10
- mean (observed): -1.1740
- mean (predicted): -1.1740
- rmse (nu = 0): 0.3822
- r^2: 0.7867
- -- PREDICTION PERFORMANCE (cross validation)
- #Runs: 1
- #Groups: 10
- #Elements Training Set: 9
- #Elements Test Set: 1
- mean (observed): -1.1740
- mean (predicted): -1.1523
- rmse (nu = 1): 0.4649
- q^2: 0.7700
- #is atskiru modeliu:
- > library(cvq2)
- > x<-cbind(CA12_1_sp, CA12_1_exprm)
- > colnames(x)[2]<-"y"
- > qsar_12_1_q2<-cvq2(x)
- > print(qsar_12_1_q2)
- ---- CALL ----
- cvq2(modelData = x)
- ---- RESULTS ----
- -- MODEL CALIBRATION (linear regression)
- #Elements: 10
- mean (observed): -1.1742
- mean (predicted): -1.1742
- rmse (nu = 0): 0.4437
- r^2: 0.7114
- -- PREDICTION PERFORMANCE (cross validation)
- #Runs: 1
- #Groups: 10
- #Elements Training Set: 9
- #Elements Test Set: 1
- mean (observed): -1.1742
- mean (predicted): -1.2306
- rmse (nu = 1): 0.5885
- q^2: 0.6299
- > x<-cbind(CA12_2_sp, CA12_2_exprm)
- > colnames(x)[2]<-"y"
- > qsar_12_2_q2<-cvq2(x)
- > print(qsar_12_2_q2)
- ---- CALL ----
- cvq2(modelData = x)
- ---- RESULTS ----
- -- MODEL CALIBRATION (linear regression)
- #Elements: 10
- mean (observed): -1.3528
- mean (predicted): -1.3528
- rmse (nu = 0): 0.5509
- r^2: 0.2316
- -- PREDICTION PERFORMANCE (cross validation)
- #Runs: 1
- #Groups: 10
- #Elements Training Set: 9
- #Elements Test Set: 1
- mean (observed): -1.3528
- mean (predicted): -1.3474
- rmse (nu = 1): 0.6524
- q^2: 0.2144
- > x<-cbind(CA12_6_sp, CA12_6_exprm)
- > colnames(x)[2]<-"y"
- > qsar_12_6_q2<-cvq2(x)
- > x
- CA12_6_sp y
- [1,] 0.40085651 0.2602451
- [2,] 0.86519246 1.1383461
- [3,] 0.82996789 0.5436340
- [4,] 0.78429634 0.5436340
- [5,] 0.31184019 0.2139666
- [6,] 0.65888150 0.5038341
- [7,] 0.46799993 0.9806948
- [8,] 0.48120229 0.9697760
- [9,] 0.07967699 0.3733971
- [10,] 0.58739670 0.0000000
- > print(qsar_12_6_q2)
- ---- CALL ----
- cvq2(modelData = x)
- ---- RESULTS ----
- -- MODEL CALIBRATION (linear regression)
- #Elements: 10
- mean (observed): 0.5528
- mean (predicted): 0.5528
- rmse (nu = 0): 0.3287
- r^2: 0.1291
- -- PREDICTION PERFORMANCE (cross validation)
- #Runs: 1
- #Groups: 10
- #Elements Training Set: 9
- #Elements Test Set: 1
- mean (observed): 0.552753
- mean (predicted): 0.543742
- rmse (nu = 1): 0.411300
- q^2: 0.005908
- > x<-cbind(CA12_7_sp, CA12_7_exprm)
- > colnames(x)[2]<-"y"
- > qsar_12_7_q2<-cvq2(x)
- > print(qsar_12_7_q2)
- ---- CALL ----
- cvq2(modelData = x)
- ---- RESULTS ----
- -- MODEL CALIBRATION (linear regression)
- #Elements: 10
- mean (observed): -0.9167
- mean (predicted): -0.9167
- rmse (nu = 0): 0.4787
- r^2: 0.4933
- -- PREDICTION PERFORMANCE (cross validation)
- #Runs: 1
- #Groups: 10
- #Elements Training Set: 9
- #Elements Test Set: 1
- mean (observed): -0.9167
- mean (predicted): -0.9308
- rmse (nu = 1): 0.6245
- q^2: 0.3714
- > x<-cbind(CA12_13_sp, CA12_13_exprm)
- > colnames(x)[2]<-"y"
- > qsar_12_13_q2<-cvq2(x)
- > print(qsar_12_13_q2)
- ---- CALL ----
- cvq2(modelData = x)
- ---- RESULTS ----
- -- MODEL CALIBRATION (linear regression)
- #Elements: 10
- mean (observed): -1.3761
- mean (predicted): -1.3761
- rmse (nu = 0): 0.4435
- r^2: 0.6936
- -- PREDICTION PERFORMANCE (cross validation)
- #Runs: 1
- #Groups: 10
- #Elements Training Set: 9
- #Elements Test Set: 1
- mean (observed): -1.3761
- mean (predicted): -1.3645
- rmse (nu = 1): 0.5460
- q^2: 0.6614
- > x<-cbind(CA12_SUM_sp, CA12_SUM_exprm)
- > colnames(x)[2]<-"y"
- > qsar_12_SUM_q2<-cvq2(x)
- > print(qsar_12_SUM_q2)
- ---- CALL ----
- cvq2(modelData = x)
- ---- RESULTS ----
- -- MODEL CALIBRATION (linear regression)
- #Elements: 10
- mean (observed): -4.2670
- mean (predicted): -4.2670
- rmse (nu = 0): 1.7739
- r^2: 0.5278
- -- PREDICTION PERFORMANCE (cross validation)
- #Runs: 1
- #Groups: 10
- #Elements Training Set: 9
- #Elements Test Set: 1
- mean (observed): -4.2670
- mean (predicted): -4.0944
- rmse (nu = 1): 2.3380
- q^2: 0.4021
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement