Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- \textbf{Penyelesaian :}\\
- \begin{enumerate}
- \item \textbf{Separasi Variabel}. Jika penyelesaiannya
- \begin{equation}
- U(x,t) = X(x) T(t)
- \end{equation}
- maka
- \begin{eqnarray*}
- U(x,t) &=& X' T \quad U_{xx} = X''T \\
- U_t &=& XT'
- \end{eqnarray*}
- Persamaan \ref{8.21} menjadi
- \begin{equation*}
- XT' = 4 X''T = 2^2 X''T
- \end{equation*}
- Akibatnya,
- \begin{equation*}
- \frac{T'}{2^2 T} = \frac{X''}{X} = -\alpha^2
- \end{equation*}
- \item \textbf{Persamaan Diferensial Biasa}
- \begin{eqnarray}
- X'' + \alpha^2 X &=& 0\\
- T' + \alpha^2 2^2 T &=& 0
- \end{eqnarray}
- \item \textbf{Syarat Homogen}
- \begin{equation*}
- 0 = U(0,t) = X(0) T(t)
- \end{equation*}
- Karena $T(t)\neq 0$ maka $X(0)=0$
- \item \textbf{Persamaan Diferensial} dalam $X$
- \begin{equation}
- X'' + \alpha^2 X = 0, \quad X(0)=0
- \end{equation}
- Penyelesaian umum,
- \begin{equation*}
- X(x) = c_1 \cos \alpha x + c_2 \sin \alpha x
- \end{equation*}
- Karena $X=0$ diperoleh
- \begin{eqnarray*}
- X &=& c_1 \cos (\alpha .0) + c_2 \sin (\alpha. 0) =0 \\
- c_1 &=& 0
- \end{eqnarray*}
- Akibatnya,
- \begin{equation*}
- X_\alpha(x) = \sin \alpha x , \alpha > 0
- \end{equation*}
- \item \textbf{Persamaan Diferensial} dalam $T$
- \begin{equation}
- T' + \alpha^2 . 2^2 T = 0
- \end{equation}
- Penyelesaiannya,
- \begin{equation*}
- T_\alpha(t) = e^{-4\alpha^2t}
- \end{equation*}
- \item \textbf{Himpunan Penyelesaian}
- \begin{eqnarray*}
- U_{\alpha}(x,t) &=& X_\alpha (x) T_\alpha (t)\\
- &=& e^{-4\alpha^2t} \sin \alpha x ,\alpha >0
- \end{eqnarray*}
- \item \textbf{Superposisi Integrasi}
- \begin{equation}
- U(x,t) = \int_0^{\infty} B(\alpha) e^{-4\alpha^2t} \sin \alpha x \text{\, d}\alpha
- \end{equation}
- dengan
- \begin{eqnarray*}
- B(\alpha) &=& \frac{2}{\pi} \int_0^{\infty} f(z) \sin \alpha z \text{\, d}z\\
- &=& \frac{2}{\pi} \int_0^{\infty} 1. \sin \alpha z \text{\, d}z\\
- &=& \frac{2}{\pi} \int_0^{\infty} e^{-sz} \sin \alpha z \text{\, d}z ; \quad s=0\\
- &=& \frac{2}{\pi} \left[\mathscr{L}\{\sin \alpha z\}\right] ; \quad s=0\\
- &=& \frac{2}{\pi}. \frac{\alpha}{\alpha^2+s^2}; \quad s=0\\
- &=& \frac{2}{\pi}. \frac{\alpha}{\alpha^2}\\
- &=& \frac{2}{\pi \alpha}
- \end{eqnarray*}
- Jadi,
- \begin{eqnarray*}
- U(x,t) &=& \int_0^{\infty} B(\alpha) e^{-4\alpha^2t} \sin \alpha x \text{\, d}\alpha\\
- &=& \frac{2}{\pi} \int_0^{\infty} \frac{\sin \alpha x}{\alpha} e^{-4\alpha^2t} \text{\, d}\alpha
- \end{eqnarray*}
- \end{enumerate}
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement