Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- import numpy as np
- import cv2
- def CompareImage(img1,img2):
- sift = cv2.xfeatures2d.SURF_create()
- kp1, des1 = sift.detectAndCompute(img1, None)
- kp2, des2 = sift.detectAndCompute(img2, None)
- FLANN_INDEX_KDTREE = 0
- index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
- search_params = dict(checks=50)
- flann = cv2.FlannBasedMatcher(index_params, search_params)
- matches = flann.knnMatch(des1, des2, k=2)
- FLANN_INDEX_KDTREE = 0
- MIN_MATCH_COUNT = 10
- index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
- search_params = dict(checks=50)
- flann = cv2.FlannBasedMatcher(index_params, search_params)
- matches = flann.knnMatch(des1, des2, k=2)
- good = []
- for m, n in matches:
- if m.distance < 0.6 * n.distance:
- good.append(m)
- if len(good) > MIN_MATCH_COUNT:
- src_pts = np.float32([kp1[m.queryIdx].pt for m in good]).reshape(-1, 1, 2)
- dst_pts = np.float32([kp2[m.trainIdx].pt for m in good]).reshape(-1, 1, 2)
- M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
- matchesMask = mask.ravel().tolist()
- return [True,"%d/%d" % (len(good), MIN_MATCH_COUNT),matchesMask]
- else:
- matchesMask = None
- return [False,"%d/%d" % (len(good), MIN_MATCH_COUNT),matchesMask]
Add Comment
Please, Sign In to add comment