Advertisement
MetricT

Recession Indicator using d(Trend Unemployment)/dt

Jan 10th, 2020
2,123
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
R 9.75 KB | None | 0 0
  1. ### Leading recession indicator using unemployment.   The algorithm is a close
  2. ### cousin of the Sahm Rule, which I derived after experimenting with her method.
  3. ###
  4. ### The Sahm Rule is a lagging indicator, while this offers a *leading*
  5. ### indicator of recessions.   It works perfectly across the entire 70 year
  6. ### UNRATENSA dataset, with no false positives or negatives.   So given its
  7. ### accuracy and its similar level of simplicity to the Sahm Rule, I believe
  8. ### that the rule is doing something very useful.   And I have not found anyone
  9. ### using this particular technique, so I believe the technique may be novel.
  10. ###
  11. ### What my rule does (and how it differs from the Sahm rule) are:
  12. ###
  13. ### * I use UNRATENSA unemployment data from FRED
  14. ###   (Sahm uses seasonally-adjusted UNRATE instead)
  15. ###
  16. ### * I use mstl() to extract the trend component of unemployment
  17. ###   (Sahm uses a moving average which should work somewhat similarly
  18. ###    on deseasonalized data)
  19. ###
  20. ### * I graph d(trend unemployment)/dt
  21. ###   (Sahm graphs the difference between the 3-month average and
  22. ###    the 12 month minimum)
  23. ###
  24. ### * If d(trend)/dt is above a small threshold, a recession is
  25. ###   extremely likely.  (Sahm requires her rule to exceed a
  26. ###   similar threshold of 0.5 before calling a recession).
  27. ###
  28. ### For this indicator, the important feature is *not* the peak, but rather the
  29. ### point where unemployment velocity turns positive.  When the velocity rises
  30. ### above the threshold, it is a reliable sign that a recession is coming a few
  31. ### months down the road.
  32. ###
  33. ### written by /u/MetricT (PM me for my actual email)
  34.  
  35. ### Set your FRED API key here.  You may request an API key at:
  36. ### https://research.stlouisfed.org/useraccount/apikeys
  37. api_key_fred <- "WHATEVER_YOUR_FRED_API_KEY_IS"
  38.  
  39. ####################################################################
  40. ### Load necessary R packages, set the FRED API key,  and set
  41. ### start/end dates for graph
  42. ####################################################################
  43.  
  44. ### We need the following packages for this example.
  45. packages <- c("fredr", "lubridate", "fredr", "ggplot2", "forecast",
  46.               "ggthemes", "tsibble", "dplyr", "magrittr", "broom", "scales")
  47.  
  48. ### Install packages if needed, then load them quietly
  49. new_packages <- packages[!(packages %in% installed.packages()[, "Package"])]
  50. if (length(new_packages)) install.packages(new_packages, quiet = TRUE)
  51. invisible(lapply(packages, "library", quietly = TRUE,
  52.                  character.only = TRUE, warn.conflicts = FALSE))
  53.  
  54. fredr_set_key(api_key_fred)
  55.  
  56. ### Specifiy the start/end date of the graph.  1948-01-01 is the
  57. ### earliest possible time for UNRATE
  58. date_start <- "1948-01-01" %>% as.Date()
  59. date_end   <- now()        %>% as.Date()
  60.  
  61. ####################################################################
  62. ### Add recession bars to ggplot graphs
  63. ####################################################################
  64. geom_recession_bars <- function (date_start, date_end) {
  65.  
  66.    date_start <- date_start %>% as.Date(origin = "1970-01-01")
  67.    date_end   <- date_end   %>% as.Date(origin = "1970-01-01")
  68.  
  69.    recessions_tibble <- tibble(
  70.    
  71.       peak   = c("1857-06-01", "1860-10-01", "1865-04-01", "1869-06-01",
  72.                  "1873-10-01", "1882-03-01", "1887-03-01", "1890-07-01",
  73.                  "1893-01-01", "1895-12-01", "1899-06-01", "1902-09-01",
  74.                  "1907-05-01", "1910-01-01", "1913-01-01", "1918-08-01",
  75.                  "1920-01-01", "1923-05-01", "1926-10-01", "1929-08-01",
  76.                  "1937-05-01", "1945-02-01", "1948-11-01", "1953-07-01",
  77.                  "1957-08-01", "1960-04-01", "1969-12-01", "1973-11-01",
  78.                  "1980-01-01", "1981-07-01", "1990-07-01", "2001-03-01",
  79.                  "2007-12-01") %>% as.Date(),
  80.    
  81.       trough = c("1858-12-01", "1861-06-01", "1867-12-01", "1870-12-01",
  82.                  "1879-03-01", "1885-05-01", "1888-04-01", "1891-05-01",
  83.                  "1894-06-01", "1897-06-01", "1900-12-01", "1904-08-01",
  84.                  "1908-06-01", "1912-01-01", "1914-12-01", "1919-03-01",
  85.                  "1921-07-01", "1924-07-01", "1927-11-01", "1933-03-01",
  86.                  "1938-06-01", "1945-10-01", "1949-10-01", "1954-05-01",
  87.                  "1958-04-01", "1961-02-01", "1970-11-01", "1975-03-01",
  88.                  "1980-07-01", "1982-11-01", "1991-03-01", "2001-11-01",
  89.                  "2009-06-01") %>% as.Date()
  90.   )
  91.  
  92.    recessions_trim <- recessions_tibble %>%
  93.                       filter(peak   >= min(date_start) &
  94.                              trough <= max(date_end))
  95.  
  96.   if (nrow(recessions_trim) > 0) {
  97.         recession_bars = geom_rect(data        = recessions_trim,
  98.                                    inherit.aes = F,
  99.                                    fill        = "darkgray",
  100.                                    alpha       = 0.25,
  101.                                    aes(xmin = as.Date(peak,   origin="1970-01-01"),
  102.                                        xmax = as.Date(trough, origin="1970-01-01"),
  103.                                        ymin = -Inf, ymax = +Inf))
  104.   } else {
  105.         recession_bars = geom_blank()
  106.   }
  107. }
  108.  
  109.  
  110. ####################################################################
  111. ### Fetch data from FRED and compute unemployment rate
  112. ####################################################################
  113. unemploy_data  <- fredr(series_id = "UNEMPLOY",  frequency = "m") %>% as_tsibble(index = "date")
  114. clf160v_data   <- fredr(series_id = "CLF16OV",   frequency = "m") %>% as_tsibble(index = "date")
  115.  
  116. date     <- unemploy_data %>% pull("date")
  117.  
  118. unemploy_trend <- unemploy_data %>% as_tsibble(index = "date") %>% pull("value") %>%
  119.                   ts(frequency = 12, start = c(year(min(date)), month(min(date)))) %>%
  120.                   mstl() %>% trendcycle()
  121.  
  122. clf160v_trend  <- clf160v_data %>% as_tsibble(index = "date") %>% pull("value") %>%
  123.                   ts(frequency = 12, start = c(year(min(date)), month(min(date)))) %>%
  124.                   mstl() %>% trendcycle()
  125.  
  126. unemployment   <- 100 * unemploy_trend / clf160v_trend
  127.  
  128. ####################################################################
  129. ### Calculations to derive unemployment "velocity", d(unemployment)/dt
  130. ####################################################################
  131. diff_trend <- unemployment %>% diff()
  132. diff_date  <- date %>% tail(n = length(diff_trend))
  133.  
  134. ### Use Friedman's SuperSmoother to eliminate "stairstepping" in the
  135. ### derivative.   Just comment out the two lines below if you want to
  136. ### use raw data instead of the smoothed data.   It works the same and
  137. ### arrives at the same conclusions, but the unsmoothed data yields
  138. ### uglier graphs.
  139. tmp <- supsmu(decimal_date(diff_date), diff_trend, span = 3/length(diff_trend))
  140. diff_trend <- tmp$y
  141.  
  142. velocity_df <- data.frame(diff_date, diff_trend) %>%
  143.                filter(diff_date >= date_start &
  144.                       diff_date <= date_end)
  145.  
  146. ####################################################################
  147. ### Find locations where the unemployment velocity line grows
  148. ### through x = 0
  149. ####################################################################
  150. axis_crossing_locations <- function(date, value) {
  151.  
  152.   # The threshold necessary to eliminate the two false positives from the 1960's
  153.   threshold <- 0.0105665
  154.  
  155.   # Shift the value by the threshold
  156.   adj_value <- value - threshold
  157.  
  158.   # See if the sign changes before/after, which indicates it has
  159.   # passed through x = 0
  160.   sign     <- value     %>% sign()
  161.   adj_sign <- adj_value %>% sign()
  162.  
  163.   # Computer time derivative of sign changes
  164.   diff_sign     <- sign     %>% diff()
  165.   diff_adj_sign <- adj_sign %>% diff()
  166.  
  167.   # Find dates when rising unemployment velocity exceeds the
  168.   # threshold.   We want to add one month to the date this
  169.   # gives, thus the "%m+% months(1)" bit.
  170.   locs <- date[diff_adj_sign == 2] %m+% months(1)
  171.   locs
  172. }
  173.  
  174. axiscrossings <- axis_crossing_locations(diff_date, diff_trend) %>% as.Date()
  175.  
  176. ####################################################################
  177. ### Graph:  Trend Unemployment Velocity
  178. ####################################################################
  179. c1 <- "U.S. Bureau of Labor Statistics, Unemployment Level [UNEMPLOY]\n"
  180. c2 <- "U.S. Bureau of Labor Statistics, Civilian Labor Force Level [CLF16OV]\n"
  181. c3 <- "Retrieved from FRED, Federal Reserve Bank of St. Louis;\n"
  182. c4 <- paste("Data retrieved on", format(Sys.time(), "%B %d, %Y at %I:%M %p %Z"))
  183.  
  184. s1 <- "Indicator (vertical dotted line) shows imminent recession when velocity rises above 0\n"
  185. s2 <- "The farther above/below 0, the faster unemployment is growing/falling\n"
  186. s3 <- "Recessions marked with vertical bars\n"
  187.  
  188. title    <- "Trend Unemployment Rate Velocity"
  189. subtitle <- paste(s1, s2, s3, sep = "")
  190. xlab     <- "Year"
  191. ylab     <- "Percent/Month"
  192. caption  <- paste(c1, c2, c3, c4, sep = "")
  193.  
  194. p <- ggplot(velocity_df, aes(x = diff_date, y = diff_trend)) +
  195.  
  196.   ### Plot unemployment velocity
  197.   geom_line(size = 1.3, color = "red3") +
  198.  
  199.   ### Add a line at velocity = 0.  Above this line, unemployment is rising, and
  200.   ### the farther above the line, the faster it rises.   Similarly, below the
  201.   ### line unemployment is falling, and the further below the line, the faster
  202.   ### it falls
  203.   geom_hline(yintercept = 0, size = 1) +
  204.  
  205.   ### Draw the recession indicators when the unemployment velocity has
  206.   ### has grown beyond x = 0
  207.   geom_vline(xintercept = axiscrossings, linetype = "dashed") +
  208.  
  209.   # Add recession bars
  210.   geom_recession_bars(min(velocity_df$diff_date), max(velocity_df$diff_date)) +
  211.  
  212.   ### Misc graph stuff
  213.   theme_economist() +
  214.   scale_x_date(breaks = pretty_breaks(10), limits = c(date_start, date_end)) +
  215.   labs(title = title, subtitle = subtitle, caption = caption,
  216.        x = xlab, y = ylab)
  217.  
  218. print(p)
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement