Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- from keras.models import load_model # TensorFlow is required for Keras to work
- import cv2 # Install opencv-python
- import numpy as np
- import serial
- import time
- bluetooth_port = 'COM3'
- baud_rate = 9600
- ser = serial.Serial(bluetooth_port, baud_rate)
- time.sleep(2) # Wait for connection
- # Disable scientific notation for clarity
- np.set_printoptions(suppress=True)
- # Load the model
- model = load_model("keras_Model.h5", compile=False)
- # Load the labels
- class_names = open("labels.txt", "r").readlines()
- # CAMERA can be 0 or 1 based on default camera of your computer
- camera = cv2.VideoCapture(0)
- while True:
- # Grab the webcamera's image.
- ret, image = camera.read()
- # Resize the raw image into (224-height,224-width) pixels
- image = cv2.resize(image, (224, 224), interpolation=cv2.INTER_AREA)
- # Show the image in a window
- cv2.imshow("Webcam Image", image)
- # Make the image a numpy array and reshape it to the models input shape.
- image = np.asarray(image, dtype=np.float32).reshape(1, 224, 224, 3)
- # Normalize the image array
- image = (image / 127.5) - 1
- # Predicts the model
- prediction = model.predict(image)
- index = np.argmax(prediction)
- class_name = class_names[index]
- confidence_score = prediction[0][index]
- # Print prediction and confidence score
- print("Class:", class_name[2:], end="")
- print("Confidence Score:", str(np.round(confidence_score * 100))[:-2], "%")
- ser.write(class_name[2:].encode())
- # Listen to the keyboard for presses.
- keyboard_input = cv2.waitKey(1)
- # 27 is the ASCII for the esc key on your keyboard.
- if keyboard_input == 27:
- break
- camera.release()
- cv2.destroyAllWindows()
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement