Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- Метод _get_actual_shipments_df:
- key date actual
- 0 sku1_117 2022-04-01 1.0
- 1 sku2_117 2022-04-01 1.0
- 2 sku3_117 2022-04-01 1.0
- 3 sku4_117 2022-04-01 1.0
- 4 sku5_117 2022-04-01 1.0
- 5 sku6_117 2022-04-01 1.0
- 6 sku1_117 2022-04-02 2.0
- 7 sku2_117 2022-04-02 2.0
- 8 sku3_117 2022-04-02 2.0
- 9 sku4_117 2022-04-02 2.0
- 10 sku5_117 2022-04-02 2.0
- 11 sku6_117 2022-04-02 2.0
- 12 sku1_117 2022-04-03 3.0
- 13 sku2_117 2022-04-03 3.0
- 14 sku3_117 2022-04-03 3.0
- 15 sku4_117 2022-04-03 3.0
- 16 sku5_117 2022-04-03 3.0
- 17 sku6_117 2022-04-03 3.0
- 18 sku1_117 2022-04-04 4.0
- 19 sku2_117 2022-04-04 4.0
- ---------- End _get_actual_shipments_df ---------
- [2023-03-15 17:50:25,964: WARNING/ForkPoolWorker-8] /usr/src/app/forecasts/services/ml_interaction/ml_server_data_sender.py:261: FutureWarning: In a future version of pandas, a length 1 tuple will be returned when iterating over a groupby with a grouper equal to a list of length 1. Don't supply a list with a single grouper to avoid this warning.
- for _, group in grouped:
- [2023-03-15 17:50:26,011: WARNING/ForkPoolWorker-8]
- Метод _remove_innovations_from_df:
- system_keys:
- {'sku3_117', 'sku1_117', 'sku2_117', 'sku5_117', 'sku6_117', 'sku4_117'}
- elements_with_innovation_status:
- <CTEQuerySet []>
- filtered_df:
- key date target partition product_key
- 0 sku1_117 2022-04-01 1.0 train sku1_117
- 1 sku1_117 2022-04-02 2.0 train sku1_117
- 2 sku1_117 2022-04-03 3.0 train sku1_117
- 3 sku1_117 2022-04-04 4.0 train sku1_117
- 4 sku1_117 2022-04-05 0.0 fc sku1_117
- ... ... ... ... ... ...
- 2205 sku6_117 2023-03-30 0.0 fc sku6_117
- 2206 sku6_117 2023-03-31 0.0 fc sku6_117
- 2207 sku6_117 2023-04-01 0.0 fc sku6_117
- 2208 sku6_117 2023-04-02 0.0 fc sku6_117
- 2209 sku6_117 2023-04-03 0.0 fc sku6_117
- [2210 rows x 5 columns]
- ---------- End _remove_innovations_from_df ---------
- [2023-03-15 17:50:26,029: WARNING/ForkPoolWorker-8]
- Метод _collect_data:
- actual_shipments:
- key date actual
- 0 sku1_117 2022-04-01 1.0
- 6 sku1_117 2022-04-02 2.0
- 12 sku1_117 2022-04-03 3.0
- 18 sku1_117 2022-04-04 4.0
- 1 sku2_117 2022-04-01 1.0
- 7 sku2_117 2022-04-02 2.0
- 13 sku2_117 2022-04-03 3.0
- 19 sku2_117 2022-04-04 4.0
- 2 sku3_117 2022-04-01 1.0
- 8 sku3_117 2022-04-02 2.0
- 14 sku3_117 2022-04-03 3.0
- 3 sku4_117 2022-04-01 1.0
- 9 sku4_117 2022-04-02 2.0
- 15 sku4_117 2022-04-03 3.0
- 4 sku5_117 2022-04-01 1.0
- 10 sku5_117 2022-04-02 2.0
- 16 sku5_117 2022-04-03 3.0
- 5 sku6_117 2022-04-01 1.0
- 11 sku6_117 2022-04-02 2.0
- 17 sku6_117 2022-04-03 3.0
- resulting_df:
- key date target partition product_key
- 0 sku1_117 2022-04-01 1.0 train sku1_117
- 1 sku1_117 2022-04-02 2.0 train sku1_117
- 2 sku1_117 2022-04-03 3.0 train sku1_117
- 3 sku1_117 2022-04-04 4.0 train sku1_117
- 4 sku1_117 2022-04-05 0.0 fc sku1_117
- ... ... ... ... ... ...
- 2205 sku6_117 2023-03-30 0.0 fc sku6_117
- 2206 sku6_117 2023-03-31 0.0 fc sku6_117
- 2207 sku6_117 2023-04-01 0.0 fc sku6_117
- 2208 sku6_117 2023-04-02 0.0 fc sku6_117
- 2209 sku6_117 2023-04-03 0.0 fc sku6_117
- [2210 rows x 5 columns]
- without_innovations:
- key date target partition product_key
- 0 sku1_117 2022-04-01 1.0 train sku1_117
- 1 sku1_117 2022-04-02 2.0 train sku1_117
- 2 sku1_117 2022-04-03 3.0 train sku1_117
- 3 sku1_117 2022-04-04 4.0 train sku1_117
- 4 sku1_117 2022-04-05 0.0 fc sku1_117
- ... ... ... ... ... ...
- 2205 sku6_117 2023-03-30 0.0 fc sku6_117
- 2206 sku6_117 2023-03-31 0.0 fc sku6_117
- 2207 sku6_117 2023-04-01 0.0 fc sku6_117
- 2208 sku6_117 2023-04-02 0.0 fc sku6_117
- 2209 sku6_117 2023-04-03 0.0 fc sku6_117
- [2210 rows x 5 columns]
- ---------- End _collect_data ---------
- Метод _get_actual_shipments_df:
- key date actual
- 0 sku1_117 2022-04-01 1.0
- 1 sku2_117 2022-04-01 1.0
- 2 sku3_117 2022-04-01 1.0
- 3 sku4_117 2022-04-01 1.0
- 4 sku5_117 2022-04-01 1.0
- 5 sku6_117 2022-04-01 1.0
- 6 sku1_117 2022-04-02 2.0
- 7 sku2_117 2022-04-02 2.0
- 8 sku3_117 2022-04-02 2.0
- 9 sku4_117 2022-04-02 2.0
- 10 sku5_117 2022-04-02 2.0
- 11 sku6_117 2022-04-02 2.0
- 12 sku1_117 2022-04-03 3.0
- 13 sku2_117 2022-04-03 3.0
- 14 sku3_117 2022-04-03 3.0
- 15 sku4_117 2022-04-03 3.0
- 16 sku5_117 2022-04-03 3.0
- 17 sku6_117 2022-04-03 3.0
- 18 sku1_117 2022-04-04 4.0
- 19 sku2_117 2022-04-04 4.0
- ---------- End _get_actual_shipments_df ---------
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement