Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- #!/usr/bin/python3
- #
- # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
- #
- import cv2
- import jetson.utils
- import argparse
- import numpy
- # allocate cuda memory
- imput = jetson.utils.videoSource("file:///jetson-inference/data/images/", )
- cuda_img = imput.Capture()
- cv2_img = cv2.imread('/jetson-inference/data/images/airplane_0.jpg') #The function to read from an image into OpenCv is imread()
- print('*** cuda_img ***\n', cuda_img)
- # create a numpy ndarray that references the CUDA memory
- # it won't be copied, but uses the same memory underneath
- array = jetson.utils.cudaToNumpy(cuda_img)
- print("*** cv2_img ***")
- print(type(cv2_img))
- print(cv2_img.dtype)
- print(cv2_img.shape) # numpy dims will be in (height, width, depth) order
- print(cv2_img)
- print("cudaToNumpy() array:")
- print(type(array))
- print(array.dtype)
- print(array.shape) # numpy dims will be in (height, width, depth) order
- print(array)
- # sudo apt-get install ros-$(rosversion -d)-cv-bridge
- # tal vez haya que hacer un "bgr --> rgb" antes!
- ros_img = bridge.cv2_to_imgmsg(array, encoding="passthrough")
- # create another ndarray and do some ops with it
- #array2 = numpy.ones(array.shape, numpy.float32)
- #print("\nadding arrays...\n")
- #print(array + array2)
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement